
CoE 163
Computing Architectures and Algorithms

Optimizing Gaussian Elimination



Recall from previous lesson

o Manufacturers/vendors implement BLAS that are
optimized for their machines

o To write optimal code, best to make use of BLAS if 
possible
o BLAS level 3 is the most efficient
o Better to reorder algorithms to use BLAS 3 versus 

BLAS level 1 or 2



Objective of this lesson

o Show how an algo can be reordered to make use 
of BLAS 3

o Reordering uses blocking, so that we operate 
more on submatrices instead of vectors/scalars



Reordering Gaussian Elimination to use 
BLAS3

Primary reference: Applied Numerical Linear Algebra by 
James W. Demmel



Let’s look at an algorithm for LU 
Factorization
o Use Gaussian Elimination which can be defined as:
o “Take each row and subtract multiplies of it from later 

rows to zero out the entries below the diagonal”



Let’s look at an algorithm for LU 
Factorization
o Use an “in-place” algorithm, where L and U are 

overwritten on A:
o Example, for the given below

𝐴 =
2 2 3
5 9 10
4 1 2

𝐴 = 𝐿𝑈

𝐿 =
1 0 0
5/2 1 0
2 −3/4 1

𝑈 =
2 2 3
0 4 5/2
0 0 −17/8



Let’s look at an algorithm for LU 
Factorization
o Use an “in-place” algorithm, where L and U are 

overwritten on A:
o Example, algorithm rewrites A with L and U as shown 

below:

𝐴 =
2 2 3
5/2 4 5/2
2 −3/4 −17/8

𝐿 =
1 0 0
5/2 1 0
2 −3/4 1

𝑈 =
2 2 3
0 4 5/2
0 0 −17/8



Let’s look at an algorithm for LU 
Factorization

for 𝑖 = 1 to 𝑛– 1
/* apply permutations so 𝑎!! ≠ 0 */
for 𝑗 = 𝑖 + 1 to 𝑛

𝑎"! = 𝑎"!/𝑎!!
end for
for 𝑗 = 𝑖 + 1 to 𝑛

for 𝑘 = 𝑖 + 1 to 𝑛
𝑎"# = 𝑎"#– 𝑎"! ∗ 𝑎!#

end for
end for

end for



Let’s look at an algorithm for LU 
Factorization

for 𝑖 = 1 to 𝑛– 1
/* apply permutations so 𝑎!! ≠ 0 */
for 𝑗 = 𝑖 + 1 to 𝑛

𝑎"! = 𝑎"!/𝑎!!
end for
for 𝑗 = 𝑖 + 1 to 𝑛

for 𝑘 = 𝑖 + 1 to 𝑛
𝑎"# = 𝑎"#– 𝑎"! ∗ 𝑎!#

end for
end for

end for

“Take each row and 
subtract multiplies of it 
from later rows to zero 
out the entries below 
the diagonal”



Let’s use Matlab notation:

for i=1 to n-1
/*apply permutations*/
A(i+1:n, i)=A(i+1:n, i)/A(i, i)
A(i+1:n, i+1:n)=A(i+1:n, i+1:n) – A(i+1:n, i)*A(i, i+1:n)

end for



Let’s use Matlab notation:

for i=1 to n-1
/*apply permutations*/
A(i+1:n, i)=A(i+1:n, i)/A(i, i)
A(i+1:n, i+1:n)=A(i+1:n, i+1:n) – A(i+1:n, i)*A(i, i+1:n)

end for

Level 1 BLAS 
(multiply vector 
by a scalar)



Let’s use Matlab notation:

for i=1 to n-1
/*apply permutations*/
A(i+1:n, i)=A(i+1:n, i)/A(i, i)
A(i+1:n, i+1:n)=A(i+1:n, i+1:n) – A(i+1:n, i)*A(i, i+1:n)

end for

Level 2 BLAS
(rank-1 update of the submatrix
𝐴(𝑖 + 1: 𝑛, 𝑖 + 1: 𝑛))



We shall reorder the algo to use Level 
3 BLAS
o Modify algorithm slightly to be used 

within our Level 3 version
o Matrix is now m-by-n

From Applied Numerical
Algebra, by Demmel

for i=1 to min(m-1,n)
A(i+1:n, i)=A(i+1:n, i)/A(i, i)
if i < n

A(i+1:n,i+1:n)=A(i+1:n,i+1:n) –
A(i+1:n,i)*A(i,i+1:n)

end for



We shall reorder the algo to use Level 
3 BLAS
o Modify algorithm slightly to be used 

within our Level 3 version
o Matrix is now m-by-n

From Applied Numerical 
Algebra, by Demmel

for i=1 to min(m-1,n)
A(i+1:n, i)=A(i+1:n, i)/A(i, i)
if i < n

A(i+1:n,i+1:n)=A(i+1:n,i+1:n) –
A(i+1:n,i)*A(i,i+1:n)

end for



We shall reorder the algo to use Level 
3 BLAS
o Modify algorithm slightly to be used 

within our Level 3 version
o Matrix is now m-by-n

From Applied Numerical 
Algebra, by Demmel

for i=1 to min(m-1,n)
A(i+1:n, i)=A(i+1:n, i)/A(i, i)
if i < n

A(i+1:n,i+1:n)=A(i+1:n,i+1:n) –
A(i+1:n,i)*A(i,i+1:n)

end for



Our BLAS 3 version will use blocking

o We will “delay” the update of submatrix 2 by 𝑏
steps, where 𝑏 is our block size

o Apply 𝑏 rank-1 updates all at once in one 
matrix-matrix multiplication



First, let’s see what happens 
mathematically
o Suppose we are done 

computing first 𝑖 − 1 columns of 
𝐿 and rows of 𝑈

𝐴 =
𝐴$$ 𝐴$% 𝐴$&
𝐴%$ 𝐴%% 𝐴%&
𝐴&$ 𝐴&% 𝐴&&

𝐴 =
𝐿$$ 0 0
𝐿$$ 𝐼 0
𝐿$$ 0 𝐼

?
𝑈$$ 𝑈%$ 𝑈&$
0 @𝐴%% @𝐴%&
0 @𝐴&% @𝐴&&

From Applied Numerical 
Algebra, by Demmel

𝑖 − 1 𝑏 𝑛 − 𝑏 − 𝑖 + 1

𝑖 − 1

𝑏
𝑛 − 𝑏 − 𝑖 + 1



First, let’s see what happens 
mathematically
o Apply our BLAS2 algorithm to 

submatrix 
@𝐴%%
@𝐴&%

to get:

@𝐴%%
@𝐴&%

= 𝐿%%
𝐿&%

? 𝑈%% =
𝐿%%𝑈%%
𝐿&%𝑈%%

We can then write:
@𝐴%% @𝐴%&
@𝐴&% @𝐴&&

= 𝐿%%𝑈%% @𝐴%&
𝐿&%𝑈%% @𝐴&&

From Applied Numerical 
Algebra, by Demmel



First, let’s see what happens 
mathematically

@𝐴%% @𝐴%&
@𝐴&% @𝐴&&

= 𝐿%%𝑈%% @𝐴%&
𝐿&%𝑈%% @𝐴&&

= 𝐿%% 0
𝐿&% 𝐼 ?

𝑈%% 𝐿%%'$ @𝐴%&
0 @𝐴&& − 𝐿&% ? 𝐿%%'$ @𝐴%&

= 𝐿%% 0
𝐿&% 𝐼 ?

𝑈%% 𝑈%&
0 @𝐴&& − 𝐿&% ? 𝑈%&

= 𝐿%% 0
𝐿&% 𝐼 ?

𝑈%% 𝑈%&
0 AA𝐴&&

From Applied Numerical 
Algebra, by Demmel



We get updated factorization with 𝑏 more 
columns of 𝐿 and 𝑈 completed

= 𝐿%% 0
𝐿&% 𝐼 ?

𝑈%% 𝑈%&
0 AA𝐴&&

𝐴!! 𝐴!" 𝐴!#
𝐴"! 𝐴"" 𝐴"#
𝐴#! 𝐴#" 𝐴##

=
𝐿!! 0 0
𝐿"! 𝐿"" 0
𝐿#! 𝐿"# 𝐼

0
𝑈!! 𝑈"! 𝑈#!
0 𝑈"" 𝑈"#
0 0 11𝐴##

From Applied Numerical 
Algebra, by Demmel



BLAS L3 Algorithm for LU Factorization

1) Use BLAS L2 Algorithm to factorize 
@𝐴%%
@𝐴&%

= 𝐿%%
𝐿&%

? 𝑈%%

2) Form 𝑈%& = 𝐿%%'$ @𝐴%& (this is a BLAS L3 operation)
3) Form AA𝐴&& = @𝐴&& − 𝐿&% ? 𝐿%%'$ @𝐴%& (MMM operation, BLAS 

L3)



BLAS L3 Algorithm for LU Factorization

for 𝑖 = 1 to 𝑛 − 1 step 𝑏
Factorize 𝐴 𝑖: 𝑛, 𝑖: 𝑖 + 𝑏 = 𝐿%%

𝐿&%
𝑈%%

/* use BLAS L2 algo*/
𝐴 𝑖: 𝑖 + 𝑏 − 1, 𝑖 + 𝑏: 𝑛 = 𝐿""$! 0 𝐴 𝑖: 𝑖 + 𝑏 − 1, 𝑖 + 𝑏: 𝑛

/* Form 𝑈%& */
𝐴 𝑖 + 𝑏: 𝑛, 𝑖 + 𝑏: 𝑛 = 𝐴 𝑖 + 𝑏: 𝑛, 𝑖 + 𝑏: 𝑛 − 𝐴 𝑖 + 𝑏: 𝑛, 𝑖: 𝑖 + 𝑏 − 1 + 𝐴 𝑖: 𝑖 + 𝑏 − 1, 𝑖 + 𝑏: 𝑛

/* Form AA𝐴&& */
end for



Additional remarks

o Need to choose block size to maximize speed
o Large blocks to multiply larger matrices
o Number of floating point operations by Level 2 and

Level 1 BLAS in step 1 is about (
%)
%

for small 𝑏
o Grows as 𝑏 grows, we don’t want to pick 𝑏 too large

o Commonly used values are 𝑏 = 32 or 𝑏 = 64
o Detailed implementations:
o BLAS 2 Algo: sgetf2 on LAPACK
o BLAS 3 Algo: sgetrf on LAPACK
o Search here: http://www.netlib.org/lapack/explore-

html/modules.html


