
CoE 164
Computing Platforms

01b: Rust Programming Basics

2

SYNTAX

Rust adopts a simplified syntax
to make it more readable.
Although it gives more powers to
the programmer, it still looks
friendly compared to other “close
to memory” languages.

3

Every statement in Rust ends with a semicolon.
Usually, a statement is contained in a single line.

STATEMENTS

let mut x = 5;
println!("Hello world!");
io::stdin()
 .read_line(&mut x)
 .expect(":(");

Example

4

Single-line comments start with two slashes. Multiline
comments are surrounded by /* */ “quotation
marks”.

COMMENTS

let mut x = 5; // Comment
/*
 a
 multiline comment!
*/

Example

5

We can import libraries that we want to use using the
use keyword. This collection of imports that usually
appear on top of a Rust program is called the
prelude.

PRELUDE

use std::io;
use std::env;
use std::path::{PathBuf};

Example

6

Variables are declared using the let keyword. All variables
should be assigned an initial value before use.

Variables are named using snake case - all words should be
in lowercase and possibly separated by underscores.

VARIABLES

let seven = 7;
let guess = "hello world!";

let a_long_name = 2.71828;

Example

7

The mut keyword can be added to note that that variable is
mutable (i.e. can be replaced with a different value).
However, we cannot replace it with a value of a different data
type.

By default, variables are not mutable.

VARIABLES

let mut ans = 3;
let guess = String::new();

guess = "hello".to_string(); // compile error
ans = 20; // NO compile error
ans = "20"; // compile error

Example

8

Constants are declared using the const keyword. They are not
mutable and can only be initialized with a constant expression.

Constants are named using snake case - all words should be in
uppercase and possibly separated by underscores.

Constants should have type annotations.

CONSTANTS

let x = 3;
const PI: f64 = 3.14;

const TAU: f64 = PI * 2; // NO compile error
const PI_3: f64 = x * 3; // compile error

Example

9

Rust infers the data type of variables depending on its
initially-assigned value. However, we can also put a
type annotation after the name of the variable to force
a variable to hold a certain data type.

TYPE ANNOTATION: BASICS

let ans: i64 = 3; // Signed integer
let is_done: bool = true; // Boolean
let mut guess: String = String::new(); //
String
let mut moles: f64 = 6.022e23; // Float

Example

10

Variable

◦ Declared using let
◦ Type annotation is optional and

can be inferred.
◦ Can be mutable
◦ Can be initialized using any

expression.

VARIABLE COMPARISON

Constant

◦ Declared using const
◦ Type annotation is required
◦ Can never be mutable
◦ Can be initialized only with a

constant value or an expression
with constants.

11

DATA TYPES

Rust has the following built-in data
types:

◦ Signed and unsigned integers
◦ Floating-point numbers
◦ Boolean
◦ Character
◦ Tuples and arrays
◦ Strings

12

DATA TYPES: NUMERIC

u8 u16 u32 u64 u128
usize*

i8 i16 i32 i64 i128
isize*

f32 f64

Unsigned
integer

Signed integer

Floats

u32
number
type

size in
bits

Rust supports various numeric types. These are
annotated with a number type and their size in bits.

* The size size in bits refers to the size of a memory address. It can
either be 32-bit (for x86) or 64-bit (for x64).

13

Rust supports basic math operations, with the same
operations expected from current programming
languages.

DATA TYPES: NUMERIC

let mut add_i = 3 + 10;
let sub_f = 5.0 - 2.0;
let mul_u = -3i32 + 78i32;
let div_i = 10 / 3;

add_i -= 3; // add_i = add_i - 3;

Example

14

Numeric data types can also accept suffixes as
substitute for the usual type signature.

Underscores can be used in between numerals as a
visual separator.

TYPE ANNOTATION: SUFFIXES

let ans: i64 = 3; // Signed integer
let ans2 = 3i64; // Signed integer
let mut pi_approx = 3.1416f64; // Floating
point
let mut e_approx = 2.718_f64; // Floating point
let c = 299_792_458; // Speed of light

Example

15

A boolean has only two possible values - true and
false. It is one byte in size. Note that conditional
expressions return a boolean.

DATA TYPES: BOOLEAN

let true_v2 = true;
let f = false;

let z = true_v2 || f; // logical OR

Example

16

A character represents a single glyph surrounded by
single quotes. It is four bytes in size and can include
non-ASCII characters.

DATA TYPES: CHARACTER

let cap_a = 'A';
let enye = 'ñ';
let emoji = '🤔';

Example

17

A tuple is a compound data type grouping data of various
types. It has a fixed length and can be mutable.

Each element of a tuple can be accessed using the dot
notation and can be “destructured” to assign each element
into individual variables.

DATA TYPES: TUPLES

let str_pair: (&str, i64) = ("3", 3);
let mut pair_ints = (7, 3);
let first_elm = pair_ints. 0;

let (fs, ss) = str_pair; // Destructuring
pair_ints.0 = -1; // Mutable assignment

Example

18

An array is a compound data type grouping data of same
types. It has a fixed length and can be mutable.

DATA TYPES: ARRAYS

// Literal syntax
let a = [1, 2, 3, 4, 5];

// 3 elements of type u32
let mut b: [u32; 3] = [6, 7, 8];

// 100 elements, all 0
let visit_list = [0u32; 100];

Example

19

Individual elements can be accessed and assigned to using
square brackets. There are also various methods that can be
called on arrays for different tasks.

DATA TYPES: ARRAYS

let mut a = [1, 2, 3, 4, 5];
println!("{}", a[0]); // Prints 1

a[3] = 2;
println!("{:?}", a); // [1, 2, 3, 2, 5]

let mylen = a.len(); // size of array a is 5

Example

20

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

01b: Rust Programming Basics

