
CoE 163
Computing Architectures and Algorithms

Running Linear Algebra Operations in a Computer
(and things we need to consider)

Previous discussion
was on linear algebra

◦ We learn linear algebra understanding
how to do the computations by hand

◦ Many considerations arise when we have
to create computer algorithms for these
operations

◦ With larger matrices / data, we need to
consider how to optimize our algorithms

Numerical Linear Algebra

◦ Specific branch of linear algebra that deals
with the following questions:

◦ How can we create computer
algorithms around matrix operations?

◦ How can these algorithms efficiently
and accurately solve problems?

◦ How can these algorithms approximate
the answers that can be obtained in
continuous mathematics?

First: brief review of computer
memory organization and behavior

(“stolen” from EEE 153 materials)

Typical Organization of Computer Memory

(“stolen” from EEE 153 materials)

Memory Hierarchy
Caches (faster memory) are introduced to speed up
computer operations

Locality of Reference

Temporal locality - recently
executed instructions (or accessed
data) are likely to be executed (or
accessed) soon
Spatial locality – instructions/data
in close proximity to a recently
executed (or accessed)
instruction/data are likely to be
executed (or accessed) soon

How can we do matrix
computations with acceptable
speed and acceptable accuracy?

Key question asked in fast.ai course: Computational Linear Algebra by Rachel
Thomas, 2017. [https://www.fast.ai/2017/07/17/num-lin-alg/]

Things to consider when
doing matrix operations on
computers

◦ Accuracy
◦ Memory use
◦ Speed
◦ Scalability

Accuracy

Exercise

Look at the function below. On paper, determine
the expected output if we set f = 0.1

Example from Numerical Methods, by Greenbaum and Chartier

def f(x):
 if x <= 1/2:
 return 2 * x
 if x > 1/2:
 return 2*x - 1

Accuracy

Exercise

Run the code below in python:

Example from Numerical Methods, by Greenbaum and Chartier

def f(x):
 if x <= 1/2:
 return 2 * x
 if x > 1/2:
 return 2*x - 1

x = 0.1
for i in range(80):
 print(x)
 x = f(x)

Accuracy

◦ Did you get the expected output?
◦ What went wrong?

Example from Numerical Methods, by Greenbaum and Chartier

Accuracy

◦ Math is infinite and continuous while
computers are finite and discrete

◦ Limitations in storing/representing numbers
◦ Remember floating point representation

from your EEE 143 lessons?

Memory use

◦ We can save memory space
if we store only the non-zero
elements of matrices

◦ This is especially useful for
sparse matrices where most
of the elements are zero

◦ Will go back to this in the
succeeding weeks

Speed

◦ How can you make the computation/algorithm
faster?

◦ Choice of algorithm
◦ Opportunities for parallelization
◦ Locality (moving things around in memory,

using what is in the cache immediately
instead of discarding and reloading to
cache)

More on Locality

◦ Computers have fast storage and slow storage
◦ Check out:

https://colin-scott.github.io/personal_website/research/interactive
_latency.html

◦ When data is in fast storage (cache) we want to run our
computations right away, before it gets bumped off (we
don’t want to have to reload it into cache)

◦ For some storage, it is faster to access data items that
are next to each other

◦ Trade off for optimizing locality: may lose opportunity to
parallelize (see next slides)

Scalability

◦ Can we scale our algorithm over multiple
cores or multiple computers over a network?

◦ Can we parallelize?
◦ Scalable algorithms:

◦ input can be broken up into smaller
pieces, can be handled by a different
core/computer, and then are put back
together at the end

https://youtu.be/3uiEyEKji0M

To further demonstrate the
impact of locality, and tradeoff
with parallelization, take a
moment to watch the following
talk (~25 minutes)

Takeaways

◦ We can improve the accuracy and
efficiency of linear algebra algorithms if
we consider that computers are finite and
discrete when we craft our algorithms

◦ Memory considerations:
◦ size limits
◦ speed at different levels of memory

hierarchy
◦ optimizing for locality in memory can

reduce scalability across cores

