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Running Linear Algebra Operations in a Computer
(and things we need to consider)



Previous discussion 
was on linear algebra

◦ We learn linear algebra understanding 
how to do the computations by hand

◦ Many considerations arise when we have 
to create computer algorithms for these 
operations

◦ With larger matrices / data, we need to 
consider how to optimize our algorithms 



Numerical Linear Algebra

◦ Specific branch of linear algebra that deals 
with the following questions:

◦ How can we create computer 
algorithms around matrix operations?

◦ How can these algorithms efficiently 
and accurately solve problems?

◦ How can these algorithms approximate 
the answers that can be obtained in 
continuous mathematics?



First: brief review of computer 
memory organization and behavior



(“stolen” from EEE 153 materials)

Typical Organization of Computer Memory



(“stolen” from EEE 153 materials)

Memory Hierarchy
Caches (faster memory) are introduced to speed up 
computer operations



Locality of Reference

Temporal locality - recently 
executed instructions (or accessed 
data) are likely to be executed (or 
accessed) soon
Spatial locality – instructions/data 
in close proximity to a recently 
executed (or accessed) 
instruction/data are likely to be 
executed (or accessed) soon



How can we do matrix 
computations with acceptable 
speed and acceptable accuracy?

Key question asked in fast.ai course: Computational Linear Algebra by Rachel 
Thomas, 2017. [https://www.fast.ai/2017/07/17/num-lin-alg/]



Things to consider when 
doing matrix operations on 
computers

◦ Accuracy
◦ Memory use
◦ Speed
◦ Scalability



Accuracy

Exercise

Look at the function below. On paper, determine 
the expected output if we set f = 0.1

Example from Numerical Methods, by Greenbaum and Chartier

def f(x):
    if x <= 1/2:
        return 2 * x
    if x > 1/2:
        return 2*x - 1



Accuracy

Exercise

Run the code below in python:

Example from Numerical Methods, by Greenbaum and Chartier

def f(x):
    if x <= 1/2:
        return 2 * x
    if x > 1/2:
        return 2*x - 1

x = 0.1
for i in range(80):
    print(x)
    x = f(x)



Accuracy

◦ Did you get the expected output?
◦ What went wrong?

Example from Numerical Methods, by Greenbaum and Chartier



Accuracy

◦ Math is infinite and continuous while 
computers are finite and discrete

◦ Limitations in storing/representing numbers
◦ Remember floating point representation 

from your EEE 143 lessons?



Memory use

◦ We can save memory space 
if we store only the non-zero 
elements of matrices

◦ This is especially useful for 
sparse matrices where most 
of the elements are zero

◦ Will go back to this in the 
succeeding weeks



Speed

◦ How can you make the computation/algorithm 
faster?

◦ Choice of algorithm
◦ Opportunities for parallelization
◦ Locality (moving things around in memory, 

using what is in the cache immediately 
instead of discarding and reloading to 
cache)



More on Locality

◦ Computers have fast storage and slow storage
◦ Check out: 

https://colin-scott.github.io/personal_website/research/interactive
_latency.html

◦ When data is in fast storage (cache) we want to run our 
computations right away, before it gets bumped off (we 
don’t want to have to reload it into cache)

◦ For some storage, it is faster to access data items that 
are next to each other

◦ Trade off for optimizing locality: may lose opportunity to 
parallelize (see next slides)



Scalability

◦ Can we scale our algorithm over multiple 
cores or multiple computers over a network?

◦ Can we parallelize?
◦ Scalable algorithms:

◦ input can be broken up into smaller 
pieces, can be handled by a different 
core/computer, and then are put back 
together at the end



https://youtu.be/3uiEyEKji0M

To further demonstrate the 
impact of locality, and tradeoff 
with parallelization, take a 
moment to watch the following 
talk (~25 minutes)



Takeaways

◦ We can improve the accuracy and 
efficiency of linear algebra algorithms if 
we consider that computers are finite and 
discrete when we craft our algorithms

◦ Memory considerations:
◦ size limits
◦ speed at different levels of memory 

hierarchy
◦ optimizing for locality in memory can 

reduce scalability across cores 


