2

kW
o, (;/
4
4 3
] g
3 [

o g

o\ / SeRVICE o
ﬁ o
LA EAA

1%

CoE 163

Computing Architectures and Algorithms

Running Linear Algebra Operations in a Computer
(and things we need to consider)

Previous discussion
was on linear algebra

o We learn linear algebra understanding

: Q /
how to do the computations by hand
> Many considerations arise when we have 4§ .
to create computer algorithms for these . .
operations

o With larger matrices / data, we need to
consider how to optimize our algorithms

a ¥y
&y

Numerical Linear Algebra

o Specific branch of linear algebra that deals &
with the following questions:

(e}

How can we create computer 8 .
algorithms around matrix operations? . .
How can these algorithms efficiently

and accurately solve problems?

How can these algorithms approximate
the answers that can be obtained in &y

continuous mathematics?

a ¥y

First: brief review of computer
memory organization and behavior

-

Typical Organization of Computer Memory . ."

CPU Cache Main Memory
Word Block
Transfer Transfer Word Size
” i Memory
Slé)t Tag Block/Line Address 0 [Block 0
1 e el et i (K WOI‘dS)
2
3 L
C-1
BlOCk—lellgtL --------------- } (‘h/I_ l)th
K words 21 Block
Cache Main Memory

(“stolen” from EEE 153 materials) .

Memory Hierarchy

Caches (faster memory) are introduced to speed up
computer operations

LARGE INEXPENSIVE

Fast memory is usually small .
and expensive.

Large memory is usually
slow and expensive.

Inexpensive memory is

— usually small and slow.

Volume

(“stolen” from EEE 153 materials)

Locality of Reference

Temporal locality - recently
executed instructions (or accessed
data) are likely to be executed (or
accessed) soon

Spatial locality — instructions/data
in close proximity to a recently
executed (or accessed)
instruction/data are likely to be
executed (or accessed) soon

How can we do matrix
computations with acceptable
speed and acceptable accuracy?

Key question asked in fast.ai course: Computational Linear Algebra by Rachel
Thomas, 2017. [https://www.fast.ai/2017/07/17/num-lin-alg/]

Things to consider when
doing matrix operations on
computers

o Accuracy

o Memory use
Speed

b/

- Scalability . I

. J

'.
&y

Accuracy

Exercise .Q
Look at the function below. On paper, determine® I
the expected output ifweset £ = 0.1

def f (x):
if x <= 1/2:
return 2 * x
if x > 1/2:
return 2*x - 1

...

a ¥y

N

Example from Numerical Methods, by Greenbaum and Chartier .

Accuracy

Exercise

Run the code below in python:

def f (x):
if x <= 1/2:
return 2 * x

if x > 1/2:
return 2*x - 1
x = 0.1
for i in range(80):
print (x)

x = f(x)

Example from Numerical Methods, by Greenbaum and Chartier

Accuracy

o Did you get the expected output?
o What went wrong?

b/

....

a ¥y

N

Example from Numerical Methods, by Greenbaum and Chartier .

Accuracy

o Math is infinite and continuous while

computers are finite and discrete !

o Limitations in storing/representing numbers
o Remember floating point representation . I

from your EEE 143 lessons?

® Floating point numbers have three parts:
sign, mantissa, and exponent

a ¥y

®" The sign is a single bit (0 for positive number, 1 for negative). .

/ l \
sign mantissa exponent

® The base (radix) is assumed (usually base 2).

Memory use

o We can save memory space
if we store only the non-zero
elements of matrices

o This is especially useful for
sparse matrices where most
of the elements are zero

o Will go back to this in the

succeeding weeks

(O] B

Il — —

EN P

(VI

N

[

B L] B

Speed

o How can you make the computation/algorithniw ! I
faster?

o Choice of algorithm . . .

o Opportunities for parallelization

o Locality (moving things around in memory,
using what is in the cache immediately IS ..
instead of discarding and reloading to

cache) .

(e]

https://colin-scott.github.io/personal_website/research/interactive
_latency.html

o When data is in fast storage (cache) we want to run our
computations right away, before it gets bumped off (we
don’t want to have to reload it into cache)

o [For some storage, it is faster to access data items that
are next to each other .

Trade off for optimizing locality: may lose opportunity to

More on Locality ‘
Computers have fast storage and slow storage
o Check out: I

a ¥y

parallelize (see next slides)

Scalability

o Can we scale our algorithm over multiple & ! I
cores or multiple computers over a network?

o Can we parallelize? 8 .
Scalable algorithms: . .

o input can be broken up into smaller

pieces, can be handled by a different |/ ..
core/computer, and then are put back
together at the end &y

To further demonstrate the
impact of locality, and tradeoff
with parallelization, take a
moment to watch the following
talk (~25 minutes)

https://youtu.be/3uiEyEK]iOM

Takeaways

> We can improve the accuracy and

y Q {
efficiency of linear algebra algorithms if

we consider that computers are finite and .
discrete when we craft our algorithms . .
Memory considerations:

o size limits

o gpeed at different levels of memory

hierarchy .
o optimizing for locality in memory can

reduce scalability across cores l

a ¥y

