
CoE 164
Computing Platforms

02c: Rust Selection Constructs

2

SELECTION
CONSTRUCTS
There are constructs available in
Rust to more precisely handle
conditions.

◦ match
◦ if let
◦ while let

Example

3

The match construct enables
comparison of a value against a
series of patterns. When the value
matches it, the expressions or
statements under the match are
executed.

The construct can support any data
type as long as it is exhaustive -
that is, it handles all possible values
of that data type.

MATCHING

let num = 12;

match num {
 0 => {
 println!("zero");
 }
 1 => {
 println!("one");
 }
 other => {
 println!("others");
 }
}

Example

4

Since match expressions should be
exhaustive, there should be a
provision for a catch-all statement
in case none of the enumerated
patterns have been matched.

Any name can be substituted as a
placeholder for the value. An
underscore can be used in case
the value will be unused in the
expression.

MATCHING: CATCH-ALL

let u = "else";

match u {
 "admin" => {
 println!("admin role");
 }
 "user" => {
 println!("user role");
 }
 _ => {
 println!("unknown");
 }
}

Example

5

Match statements can return
expressions that can consequently
be assigned to a variable. Note that
each match should implicitly return
some value and all matches are
enumerated.

MATCHING: IF MATCH

let num = 12;

let num_str = match num {
 0 => {
 "zero"
 }
 1 => {
 "one"
 }
 other => {
 "others"
 }
};

Exam
ple

6

Enums with associated data can be used in statements inside its
respective match block.

MATCHING: ENUMS

let my_user = UserType::SuperAdmin;

let type_id = match my_user {
 UserType::SuperAdmin => 0,
 UserType::Admin(is_super, chown) => 1,
 UserType::User { chown: chown } => 2,
 UserType::Unknown => 3,
};

Exam
ple

7

Struct enums can use the shorthand syntax if the corresponding field
name and variable name in the statement are the same. Tuple enums can
have variable names to label each of its elements for use in the block.

MATCHING: ENUMS

let my_user = UserType::User { chown: 0o755 };

let chown_read = match my_user {
 UserType::User { chown } => chown | 0o400,
 _ => 0o400,
};

Exam
ple

8

The if let construct enables matching whether some data is of a
certain enum variant. If the enum holds some data, the data can be
accessed inside the if let block.

If let blocks can be mixed with normal if else blocks.

IF LET

let my_user = UserType::User { chown: 0o755 };

if let UserType::User { chown } = my_user {
 println!("User with permission: {chown}");
}
else {
 println!("Not a user!");
}

Exam
ple

9

The while let is similar to the if let block except that the loop will
be executed as long as a statement matches a certain enum variant.

WHILE LET

let mut stk = vec![1, 2, 3];

while let Some(x) = stk.pop() {
 println!("{x}");
}

10

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

02c: Rust Selection Constructs

