
CoE 163
Computing Architectures and Algorithms

11b: Parallel Programming and Hardware

BOTTLENECKS

2

You may have noticed that
parallelizing a program does not
always yield a better result.
Worse, it is even slower than the
sequential program equivalent!

Why is that?

3

BOTTLENECKS

Pipelined CPUs

Memory
references

Atomic
operations

Memory
barriers

Cache misses

I/O operations

4

BOTTLENECKS:
PIPELINED CPUS
● Modern CPUs have the capability to

execute multiple parts of instructions in
a single clock cycle - they have
instruction-level parallelism

● Such CPUs use one or more of the
following techniques to make the most
out of each clock cycle:
○ Pipelining
○ Superscalar techniques
○ Out-of-order execution
○ Speculative execution
○ … and more!

5

BOTTLENECKS: PIPELINED CPUS

● Most pipelined CPUs will have an execution process similar to
the one shown below - a five-stage pipeline.

● Hazards slow down the pipeline.

6

BOTTLENECKS: PIPELINED CPUS

● A superscalar CPU can simultaneously process more than one
instruction.

● Other techniques need to be implemented to prevent hazards,
such as out-of-order execution and branch prediction.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

(Wrongly)
preloaded
instructions

Correct instructions

7

BOTTLENECKS: PIPELINED CPUS

● Out-of-order execution tries to maintain maximum usage of a
CPU during hazard resolution by executing instructions
independent of the instruction being resolved.

● What if we need the instructions to be executed in order?

mov rbx, [rcx]
add rax, rbx
add rax, rcx
add r8, rcx
add r8, r9

rbx is still loading at this
time

Maybe we can execute
these first while we’re
waiting for mov to finish

8

BOTTLENECKS: PIPELINED CPUS

● Branch prediction guesses whether a conditional instruction will
be true and preloads the next instructions according to the
predicted result.

● What if we guessed wrong? We have to flush the pipeline and
load the correct set of instructions!

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

WB

MEM WB

IF

(Wrongly)
preloaded
instructions

Correct instructions
ID EX MEM WB

IF ID EX MEM WB

9

BOTTLENECKS: MEMORY
REFERENCES

● Due to Moore’s Law, CPU
speeds have dramatically
increased over the past few
decades.

● Unfortunately, the associated
memory sizes and access
speeds have not grown at the
same speed.

10

BOTTLENECKS: MEMORY
REFERENCES
● Modern CPUs implement some sort of cache hierarchy.
● The lowest level closest to the CPU is fastest but has the

smallest size.
● Random access (e.g. traversing a tree or linked list) leads to

higher latency due to cache misses.

11

BOTTLENECKS:
ATOMIC OPERATIONS
● An atomic operation executes while

barring any other process from
reading or changing any data or
state involved in the operation.

● It conflicts with the assembly line
nature of pipelined CPUs because
the instruction and data need to be
held solely by the CPU.

● We may need to stall or flush the
pipeline to execute the operation
properly!

12

BOTTLENECKS: ATOMIC
OPERATIONS
● In some languages, we can force atomic operations by using

some sort of synchronization to force programs to execute in
order and one at a time.

● A code block or lock can be used to perform such
synchronization.

// Java
synchronized(mythread) {
 a += 1;
 b -= 1;
}

13

● A lock is a software mechanism that
limits access to data between the
time it is held or used.

● Such locks prevent out-of-order
execution.

BOTTLENECKS:
MEMORY BARRIERS

14

BOTTLENECKS: MEMORY
BARRIERS
● A mutual exclusion (mutex) lock can be used similar to the

synchronized blocks in other languages.
● A counting semaphore can be used if it is acceptable for more

than one process or thread to have access to the same
resource.

// C++
void fun(int d) {
 mux_lock.lock();

 z += d;

 mux_lock.unlock();
}

● A cache holds frequently-accessed
data for faster retrieval later.

● Cache accesses are fast, but if the
data is not in the cache, the CPU
needs to access the slower memory
or data store, and then load the data
into the cache.

● Frequent cache misses slow down
execution time.

15

BOTTLENECKS:
CACHE MISSES

● Speed of communication of CPU to
and from outside sources is highly
variable.

● This includes network, storage, and
human resources.

● A distributed parallel program
requires such I/O access, which can
drastically slow down its execution
time compared to ones with shared
memory.

16

BOTTLENECKS: I/O
OPERATIONS

OVERHEADS

17

The previous bottlenecks
generate overheads in computer
programs - not just parallel ones.

The CPU will have to go through
all of these hurdles just to
execute one instruction!

18

◦ Shown below is an oversimplified diagram of an eight-core CPU
◦ Each core is grouped into two in a die, which can communicate with each

other and to other cores via either a “local” or “global” interconnect

OVERHEADS: SYSTEM
HARDWARE ARCHITECTURE

CPU0 CPU1

Cache Cache

Interconnect

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU6 CPU7

Cache Cache

Interconnect

CONSIDER...

19

CPU0 wants to write to a variable
whose cache line is, apparently,
stored in CPU7!

20

◦ CPU0 checks its cache and does not find the variable, so it
sends a request to its local interconnect.

OVERHEADS: VARIABLE
WRITING

CPU0 CPU1

Cache Cache

Interconnect

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU6 CPU7

Cache Cache

Interconnect

21

◦ The local interconnect checks CPU1 to find out that the
variable is not there!

◦ The local interconnect sends the request to the global one.

OVERHEADS: VARIABLE
WRITING

CPU0

Cache

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU6 CPU7

Cache Cache

Interconnect

CPU1

Cache

Interconnect

22

◦ The global interconnect finds out that the target variable is
stored in the die containing CPU6 and CPU7.

◦ The global interconnect sends a request to the local one.

OVERHEADS: VARIABLE
WRITING

CPU0

Cache

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU6 CPU7

Cache Cache

Interconnect

CPU1

Cache

Interconnect

23

◦ The local interconnect checks both CPUs to find out that the
variable is stored in CPU7.

OVERHEADS: VARIABLE
WRITING

CPU0

Cache

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU1

Cache

Interconnect

Interconnect

CPU6 CPU7

Cache Cache

24

◦ CPU7 returns the relevant cache line and flushes it from its own
cache.

◦ The returned cache line is sent to the local interconnect.

OVERHEADS: VARIABLE
WRITING

CPU0

Cache

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU1

Cache

Interconnect

Interconnect

CPU7

Cache

CPU6

Cache

25

◦ The local interconnect sends the cache line to the global one.
◦ The global interconnect sends the cache line to the die containing CPU0.
◦ The local interconnect sends the cache line to the cache of CPU0.

OVERHEADS: VARIABLE
WRITING

CPU0

Cache

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU1

Cache

Interconnect

Interconnect

CPU6

Cache

CPU7

Cache

26

◦ The cache line gets received and CPU0 can now write to the
variable.

◦ The new value is then stored in its own cache.

OVERHEADS: VARIABLE
WRITING

CPU0 CPU1

Cache Cache

Interconnect

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU6 CPU7

Cache Cache

Interconnect

● What if the variable does not exist in
any of the caches?

● What if the cache line in CPU7 has
already expired once the request
arrives?

● What if CPU2 wanted to write to the
same variable CPU0 wants to write
to?

● What if there are read-only copies of
the same cache line across the other
CPUs?

27

OVERHEADS:
VARIABLE WHAT-IFS

Making sure that the cache of all of
the cores reflect the truest state of a
variable is a subject of
cache-coherency protocols.

If the variable is only being read most
of the time, then access will be very
fast.

28

OVERHEADS: CACHE
COHERENCY

We can get a feel for the effect of
these overheads by profiling it
against a CPU operation.

29

OVERHEADS:
OPERATION COST

CONSIDER...

30

A compare-and-swap (CAS) operation
compares two registers and replaces the
destination register with some value if their
contents are equal. In x86_64, it is the
cmpxchg instruction. We will make it atomic
by using the lock prefix.

31

◦ “Same CPU” CAS means that the current CPU has most
recently accessed the variables used in the operation.

◦ “In-core” CAS means that there are hardware threads sharing a
single core.

OVERHEADS: OPERATION COST

CAS Lock

Same
CPU

CAS

In
Core

Blind

Same
CPU

CAS

In
Core

CAS

Off
Core

Blind

CAS

Off
Core

CAS

Off
Socket

Blind

CAS

Off
Socket

Fast Slow

93031221410038321514Speed
Ratio

* Speed ratio computed as execution time per clock period. Ratios obtained and estimated from a group of Intel Xeon
Platinum 8176 processors.

32

In a blind CAS operation, the two
registers to compare are readily
available via software. Only one lock
is required.

On the other hand, in a normal CAS
operation, the other register where
the “old” value is stored will have to
be loaded from memory. This needs
two locks!

lock

cmpxchg rbx, rcx

Load RAX, RCX

Load RBX

Get RAX, RCX lock

Get RBX lock

Compare RAX and RBX

Write RBX or RCX to RAX

Release RBX
lock

OVERHEADS: OPERATION COST

Release RAX, RCX lock

Normal Blind

33

OPTIMIZATIONS

Large cache
lines

Cache
prefetching

Store buffers

Enables fetching of a
large chunk of the
cache

Prone to false sharing
resulting to high
cache miss rate.

Fetch subsequent
cache lines during a
fetch

Efficient only if the
hardware is able to at
least know when to
prefetch

Buffer to pre-empt
writing during cache
miss or when writes
are on
non-consecutive
addresses

Prone to memory
misordering.

34

OPTIMIZATIONS

Speculative
execution

Large caches Read-mostly
replication

May lead to
inefficiency if
speculation goes
wrong all the time,
and is even prone to
security attacks*!

Store a lot on the
caches at the
expense of higher
latency during cache
misses.

Store read-mostly
data across all caches
at the expense of a
higher latency when
the rare write
operation happens.

* See Spectre and Meltdown vulnerabilities from 2018

Given all of the CPU bottlenecks and
overheads, the most ideal way to
formulate parallel algorithms and
programs is to make sure that they
are embarrassingly parallel.

35

PARALLEL
SOFTWARE DESIGN

36

PARALLEL SOFTWARE DESIGN:
OPTIMIZATIONS

Independent
threads

Read-mostly
data sharing

Embarrassingly
parallelizable

Reduce
communication
between threads to
reduce
synchronization
measures

Take advantage of this
CPU functionality for
maximum speed

Aside from reducing
communication,
threads should be
able to run by
themselves without
any external
intervention

TIPS

37

● Consider the CPU architecture
to gauge whether parallelizing a
program is worth it

● Strive to make embarrassingly
parallel programs and
algorithms

● Practice decomposing
problems into units

RESOURCES

38

● Perfbook from the Linux Kernel
Archives

● Blog post on a flaw on
speculative execution from
Google Project Zero

https://cdn.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

CoE 163
Computing Architectures and Algorithms

11b: Parallel Programming and Hardware

