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BOTTLENECKS
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You may have noticed that 
parallelizing a program does not 
always yield a better result. 
Worse, it is even slower than the 
sequential program equivalent!

Why is that?
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BOTTLENECKS

Pipelined CPUs

Memory 
references

Atomic 
operations

Memory 
barriers

Cache misses

I/O operations
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BOTTLENECKS: 
PIPELINED CPUS
● Modern CPUs have the capability to 

execute multiple parts of instructions in 
a single clock cycle - they have 
instruction-level parallelism

● Such CPUs use one or more of the 
following techniques to make the most 
out of each clock cycle:
○ Pipelining
○ Superscalar techniques
○ Out-of-order execution
○ Speculative execution
○ … and more!
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BOTTLENECKS: PIPELINED CPUS

● Most pipelined CPUs will have an execution process similar to 
the one shown below - a five-stage pipeline.

● Hazards slow down the pipeline.
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BOTTLENECKS: PIPELINED CPUS

● A superscalar CPU can simultaneously process more than one 
instruction.

● Other techniques need to be implemented to prevent hazards, 
such as out-of-order execution and branch prediction.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

(Wrongly) 
preloaded 
instructions

Correct instructions
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BOTTLENECKS: PIPELINED CPUS

● Out-of-order execution tries to maintain maximum usage of a 
CPU during hazard resolution by executing instructions 
independent of the instruction being resolved.

● What if we need the instructions to be executed in order?

mov rbx, [rcx]
add rax, rbx
add rax, rcx
add r8, rcx
add r8, r9

rbx is still loading at this 
time

Maybe we can execute 
these first while we’re 
waiting for mov to finish
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BOTTLENECKS: PIPELINED CPUS

● Branch prediction guesses whether a conditional instruction will 
be true and preloads the next instructions according to the 
predicted result.

● What if we guessed wrong? We have to flush the pipeline and 
load the correct set of instructions!

IF ID EX MEM WB

IF ID EX MEM

IF ID EX

WB

MEM WB

IF

(Wrongly) 
preloaded 
instructions

Correct instructions
ID EX MEM WB

IF ID EX MEM WB
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BOTTLENECKS: MEMORY 
REFERENCES

● Due to Moore’s Law, CPU 
speeds have dramatically 
increased over the past few 
decades.

● Unfortunately, the associated 
memory sizes and access 
speeds have not grown at the 
same speed.
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BOTTLENECKS: MEMORY 
REFERENCES
● Modern CPUs implement some sort of cache hierarchy.
● The lowest level closest to the CPU is fastest but has the 

smallest size.
● Random access (e.g. traversing a tree or linked list) leads to 

higher latency due to cache misses.
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BOTTLENECKS: 
ATOMIC OPERATIONS
● An atomic operation executes while 

barring any other process from 
reading or changing any data or 
state involved in the operation.

● It conflicts with the assembly line 
nature of pipelined CPUs because 
the instruction and data need to be 
held solely by the CPU.

● We may need to stall or flush the 
pipeline to execute the operation 
properly!
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BOTTLENECKS: ATOMIC 
OPERATIONS
● In some languages, we can force atomic operations by using 

some sort of synchronization to force programs to execute in 
order and one at a time.

● A code block or lock can be used to perform such 
synchronization.

// Java
synchronized(mythread) {
    a += 1;
    b -= 1;
}
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● A lock is a software mechanism that 
limits access to data between the 
time it is held or used.

● Such locks prevent out-of-order 
execution.

BOTTLENECKS: 
MEMORY BARRIERS
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BOTTLENECKS: MEMORY 
BARRIERS
● A mutual exclusion (mutex) lock can be used similar to the 

synchronized blocks in other languages.
● A counting semaphore can be used if it is acceptable for more 

than one process or thread to have access to the same 
resource.

// C++
void fun(int d) {
    mux_lock.lock();
 
    z += d;
 
    mux_lock.unlock();
}



● A cache holds frequently-accessed 
data for faster retrieval later.

● Cache accesses are fast, but if the 
data is not in the cache, the CPU 
needs to access the slower memory 
or data store, and then load the data 
into the cache.

● Frequent cache misses slow down 
execution time.
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BOTTLENECKS: 
CACHE MISSES



● Speed of communication of CPU to 
and from outside sources is highly 
variable.

● This includes network, storage, and 
human resources.

● A distributed parallel program 
requires such I/O access, which can 
drastically slow down its execution 
time compared to ones with shared 
memory.
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BOTTLENECKS: I/O 
OPERATIONS



OVERHEADS

17

The previous bottlenecks 
generate overheads in computer 
programs - not just parallel ones.

The CPU will have to go through 
all of these hurdles just to 
execute one instruction!
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◦ Shown below is an oversimplified diagram of an eight-core CPU
◦ Each core is grouped into two in a die, which can communicate with each 

other and to other cores via either a “local” or “global” interconnect

OVERHEADS: SYSTEM 
HARDWARE ARCHITECTURE
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CPU2 CPU3
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CONSIDER...
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CPU0 wants to write to a variable 
whose cache line is, apparently, 
stored in CPU7!
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◦ CPU0 checks its cache and does not find the variable, so it 
sends a request to its local interconnect.

OVERHEADS: VARIABLE 
WRITING

CPU0 CPU1
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CPU2 CPU3
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CPU4 CPU5
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◦ The local interconnect checks CPU1 to find out that the 
variable is not there!

◦ The local interconnect sends the request to the global one.

OVERHEADS: VARIABLE 
WRITING

CPU0

Cache

CPU2 CPU3

Cache Cache

Interconnect

CPU4 CPU5

Cache Cache

Interconnect

System InterconnectMemory Memory

CPU6 CPU7

Cache Cache

Interconnect

CPU1

Cache

Interconnect



22

◦ The global interconnect finds out that the target variable is 
stored in the die containing CPU6 and CPU7.

◦ The global interconnect sends a request to the local one.

OVERHEADS: VARIABLE 
WRITING
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◦ The local interconnect checks both CPUs to find out that the 
variable is stored in CPU7.

OVERHEADS: VARIABLE 
WRITING
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◦ CPU7 returns the relevant cache line and flushes it from its own 
cache.

◦ The returned cache line is sent to the local interconnect.

OVERHEADS: VARIABLE 
WRITING
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◦ The local interconnect sends the cache line to the global one.
◦ The global interconnect sends the cache line to the die containing CPU0.
◦ The local interconnect sends the cache line to the cache of CPU0.

OVERHEADS: VARIABLE 
WRITING
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◦ The cache line gets received and CPU0 can now write to the 
variable.

◦ The new value is then stored in its own cache.

OVERHEADS: VARIABLE 
WRITING
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● What if the variable does not exist in 
any of the caches?

● What if the cache line in CPU7 has 
already expired once the request 
arrives?

● What if CPU2 wanted to write to the 
same variable CPU0 wants to write 
to?

● What if there are read-only copies of 
the same cache line across the other 
CPUs?
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OVERHEADS: 
VARIABLE WHAT-IFS



Making sure that the cache of all of 
the cores reflect the truest state of a 
variable is a subject of 
cache-coherency protocols.

If the variable is only being read most 
of the time, then access will be very 
fast.
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OVERHEADS: CACHE 
COHERENCY



We can get a feel for the effect of 
these overheads by profiling it 
against a CPU operation.
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OVERHEADS: 
OPERATION COST



CONSIDER...
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A compare-and-swap (CAS) operation 
compares two registers and replaces the 
destination register with some value if their 
contents are equal. In x86_64, it is the 
cmpxchg instruction. We will make it atomic 
by using the lock prefix.
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◦ “Same CPU” CAS means that the current CPU has most 
recently accessed the variables used in the operation.

◦ “In-core” CAS means that there are hardware threads sharing a 
single core.

OVERHEADS: OPERATION COST

CAS Lock

Same 
CPU

CAS

In 
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Blind

Same 
CPU
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Off 
Socket

Blind

CAS

Off 
Socket

Fast Slow

93031221410038321514Speed 
Ratio

* Speed ratio computed as execution time per clock period. Ratios obtained and estimated from a group of Intel Xeon 
Platinum 8176 processors.
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In a blind CAS operation, the two 
registers to compare are readily 
available via software. Only one lock 
is required.

On the other hand, in a normal CAS 
operation, the other register where 
the “old” value is stored will have to 
be loaded from memory. This needs 
two locks!

lock

cmpxchg rbx, rcx

Load RAX, RCX

Load RBX

Get RAX, RCX lock

Get RBX lock

Compare RAX and RBX

Write RBX or RCX to RAX

Release RBX 
lock

OVERHEADS: OPERATION COST

Release RAX, RCX lock

Normal Blind
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OPTIMIZATIONS

Large cache 
lines

Cache 
prefetching

Store buffers

Enables fetching of a 
large chunk of the 
cache

Prone to false sharing 
resulting to high 
cache miss rate.

Fetch subsequent 
cache lines during a 
fetch

Efficient only if the 
hardware is able to at 
least know when to 
prefetch

Buffer to pre-empt 
writing during cache 
miss or when writes 
are on 
non-consecutive 
addresses

Prone to memory 
misordering.
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OPTIMIZATIONS

Speculative 
execution

Large caches Read-mostly 
replication

May lead to 
inefficiency if 
speculation goes 
wrong all the time, 
and is even prone to 
security attacks*!

Store a lot on the 
caches at the 
expense of higher 
latency during cache 
misses.

Store read-mostly 
data across all caches 
at the expense of a 
higher latency when 
the rare write 
operation happens.

* See Spectre and Meltdown vulnerabilities from 2018



Given all of the CPU bottlenecks and 
overheads, the most ideal way to 
formulate parallel algorithms and 
programs is to make sure that they 
are embarrassingly parallel.
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PARALLEL 
SOFTWARE DESIGN
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PARALLEL SOFTWARE DESIGN: 
OPTIMIZATIONS

Independent 
threads

Read-mostly 
data sharing

Embarrassingly 
parallelizable

Reduce 
communication 
between threads to 
reduce 
synchronization 
measures

Take advantage of this 
CPU functionality for 
maximum speed

Aside from reducing 
communication, 
threads should be 
able to run by 
themselves without 
any external 
intervention



TIPS
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● Consider the CPU architecture 
to gauge whether parallelizing a 
program is worth it

● Strive to make embarrassingly 
parallel programs and 
algorithms

● Practice decomposing 
problems into units



RESOURCES
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● Perfbook from the Linux Kernel 
Archives

● Blog post on a flaw on 
speculative execution from 
Google Project Zero

https://cdn.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
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