CoE 163

Computing Architectures and Algorithms

. ® \atrix-Matrix Muttiplication (part 2)

L 4

T

Recall our MMM “ijk” algorithm

t
I Load row i of A into fast memory

n
for k = 1 to n
= Ciyt Aj*Byy

end for
end for

Recall our MMM “ijk” algorithm

for 1 =1 to n —
. < Load row i of A into fast memory
for J = L to n Load C; into fast memory
for k =1 ton
Ciy = Ciyt Aj*Byy
end for
end for

end for

Recall our MMM “ijk” algorithm

* 0

end for
end for

for 1 =1 ton —
. < Load row i of A into fast memory
for J = L to n Load C; into fast memory
—for”k = 1 to n
Load 1f:olumnj of B into Cij = Cij+ Aik*Bkj
ast memory
end for

Recall our MMM “ijk” algorithm

for 1 =1 ton —
. < Load row i of A into fast memory
for J = L to n Load C; into fast memory
—for"k = 1 ton Perform
Load 1f:olumn j of B into Cij = Cij + ﬁik* Bkj operation
ast memory
end for

* 0

end for
end for

Recall our MMM “ijk” algorithm

for 1 =1 ton ——
. < Load row i of A into fast memory
for J = L to n Load C; into fast memory
—£or" k = 1 to n Perform
Load 1f:olumn j of B into Cij = Cij + ﬁik* Bkj operation
ast memory
end for
’ - Write C;; back to slow
end for memory

end for

Is there a way to make our MMM
¢ algorithm more efficient in terms of
memory use?

\ 4

T

¢ Firstlet’s analyze the performance of our
algorithm

o

\ 4

.

Assumptions about computer archi

2 levels of memory: slow and fast

Slow memory

Assume column major

Large enough to store 3 nxn matrices, A, B, and C
Fast memory

Only contains M words where 2n < M < n?

Cannot contain an entire nxn matrix
Can contain at least 2 matrix columns or rows

Slow memory can contain 2 rows of

A i n fast me m O ry Line number 4 words per cache line
X ajq azy Az, Ay
Suppose n = 10, and M = 64
x+1 a9y Q101 Az az3
Example shows 4-word cache
. X+2 a3 a3 aszs Qy3
lines
a X+3 Qg3 103 Ay4 Azs
11
x+4 ajs azs azs Qys
a21 X+5 Qgs Q105 A Az
asq X+6 a7 az7 a3z QAy7
X+7 Qg7 Q107 aig azg
X+8 1) Q39 a3 Q49
a71 x+9 Qgg Q109 aj 10 a3 10
a81 x+10
x+12
a
o1 x+13
A101 x+14
x+15
Matrix A stored column- Fast memory with 64 words: greater than 2n, but

wise in slow memory much less than n?

Total number of memory references?

n?: Move n elements per row of A (nxn) into fast
memory, keep it there until no longer needed

n3: Move n elements per column of B (nxn), n
times (for each value of i)

2n?: Move each element of C into fast memory
until computation completes, then move back into
slow memory (2 transfers per element)

Thus, this algorithm involves 3n? + n2 memory
references

What does this say about the
performance?

Total number of memory references?

n?: Move n elements per row of A (nxn) into fast
memory, keep it there until no longer needed

n3: Move n elements per column of B (nxn), n
times (for each value of i)

2n?: Move each element of C into fast memory
until computation completes, then move back into
slow memory (2 transfers per element)

Thus, this algorithm involves 3n? + n2 memory
references

Execution time grows approx. cubically
as n increases

How efficient is the algorithm?

f - number of floating point operations

3 nested loops that iterate from 1 to n, 2 operations
at innermost loop, thus f = 2n3

Let g = ratio of f to memory references

q = 2n3/(3n? 4+ n3)
If nis very large, q = 2 (try solving for g when n =
500)

Approx only 2 operations per memory reference

Is there a way to improve this?

Costly: row traversal on row-major memory

Line number 4 words per cache line

2 columns of B involves data that are X: ZZ aajl z:: Zz

close to each other — OK! e ” - o, o
Use up many cache lines for 2 rows

of A - NOT OK! L e e

x+4 ajs azs azs Qys

MMM operation has inherent X s e L =

prOblem: X+6 (5% azyz azy Q47

One matrix is traversed row-wise, the xt7 o7 Zi07 G 28

other column-wise x+8 1o %29 dso Aag

Whether memory is row- or column- x+9 gg 109 aj 19 a; 19

major, we do costly cache transfers x+10 b1 bay bsy by

X+12 bsy bey b4 bg,

x+13 byq bio1 by, by,

x+14 b3, by, bs, be>

X+15 by, bg, bo, by »

Fast memory with 64 words: greater than 2n, but
much less than n?

Innermost loop of algorithm
uses an entire row of matrix
A and entire columns of
matrix B — Long strides
Uses up many cache lines
for a few operations
Shorter strides are often
better

Costly: traversal with long strides

Line number

4 words per cache line

X aq azy Az, Ay
x+1 Qgq Q101 Az az3
X+2 a3 az3 azs Qg3
X+3 Qg3 103 Ay4 Azs
x+4 ajs azs azs Qys
X+5 Qgs Q105 A Az
X+6 a7 az7 azy Q47
x+7 Qg7 Qo7 aig azg
X+8 1) Q39 a3 Q49
x+9 Qgg Q109 aj 10 a3 10

x+10 by4 by, bz, bay
X+12 bs, be1 b4 bg,
x+13 boy big1 by, b,
x+14 b3, b4 bs, be;
X+15 b;, bg, bs, b1,

Fast memory with 64 words: greater than 2n, but

much less than n2

Costly: traversal with long strides

. Line number 4 words per cache line
AT IF I\T l vnll X ayq a1 a3y ayq
N x+1 Agq a0 1 aj; azz
X+2 a3 a3 as3 %
X+3 Qg3 Q103 aq Azq
x+4 a;s azs ass Qss
X+5 Qgs Q105 Q16 A6
X+6 a7 az7 azy Ay7
x+7 Qg7 Q107 aig azs
X+8 Q9 Azg A39 Q49
‘ . ; X+9 (gg Q109 ag 19 az 10
Y A x+10 b11 by4 bs4 by
YOU DIDNT HAVETO LOAD | Scm s s
THE ENTIRE ROW ALL AT ONCE oo e e e
T — . x+14 b3, by, bs;, be>
‘ Morpheus, from “The Matrix” x+15 b7 bs, bs, bio2

Fast memory with 64 words: greater than 2n, but
much less than n?

Let’s use blocking

Let’s break C into an (NxN) block matrix with
n n
(— X —)blocks
N_ N
CY, and A and B are similarly partitioned
Example below when N =5and n = 10

BY

Let’s use blocking

below

% length slices of rows of A are multiplied with
% height segments of columns of B as shown

Blocking gives us shorter strides

We break up the MMM Line number 4 words per cache line

computation into smaller chunks X a1 21 a3, A4y

Traverse with shorter strides X+ o1 @101 1y Az
x+2 bll b21 b31 b41

across our rows and columns

. X+3 b b b b

Diagram shows 2x2 sub-blocks = — »
for A, B, and C in cach T
Or ’) an In CaC e X+5 Cyq Cio1 Ciz Ca2

We don’t waste so many cache X+6

lines per operation! X+7
X+8

+9

€11 Co2 a1 Q12 b1 | b1y -
4= * x+10
Cz1| Coz a1 | Az by1| by x+12

x+13

x+14

x+15

Fast memory with 64 words: greater than 2n, but
much less than n?

Our algorithm with blocking becomes:

for i = 1 to N
for j =1 to N
for k =1 to N
cil = cii + aik . BK]
end for
end for
end for

Our algorithm with blocking becomes:

for i =1 to N

for j =1 to N Matrix multiplication
for k =1 to N of (2x2) block Aik
end for
end for
end for
BY

Our algorithm with blocking becomes:

for i =1 to N Load Cil into fast memory
for j = 1 to Nk////////

for k =1 to N
cil = cii + aik . BK]

end for
end for
end for

BY

Our algorithm with blocking becomes:

for i =1 to N *////////LnajOHmoﬁmtmemow
for J =1 to N Load Ak and B into fast memory

for k =1 to N

cil = cii + aik . BK]
end for
end for
end for

BY

Our algorithm with blocking becomes:

for i =1 to N *////////LnajOHmoﬁmtmemow
for J =1 to N Load Ak and B into fast memory

for k =1 to N

Perform . »(cii 2 cii 4 aik . kI
operation end for
end for
end for

BY

Perform
operation

Our algorithm with blocking becomes:

for i =1 to N

Load Ci into fast memory

for j = 1 to Nk////////

for k =1 to N
| —>cii =ci + A
end for

Load Ak and BX into fast memory

ik Bkj

end forY —/——

Write Cii back to slow memory

end for

How many memory references Iif
blocking is used?
Read each ($Xx3) block of A N3 times:
N3(Z;) = Nn?
Read each ($x) block of B N3 times:
Nn?
Read and write each (%) block of C

once
n? (read) + n2 (write) = 2n?2
Total: 2n?2 4+ 2Nn? = (2 4+ 2N)n? ~ 2Nn?

N is usually much larger than 2, so we get
approximately 2Nn? memory references

How many memory references Iif
blocking is used?
Read each ($Xx3) block of A N3 times:
N3(Z;) = Nn?
Read each ($x) block of B N3 times:
Nn?
Read and write each (%) block of C

once
n? (read) + n2 (write) = 2n?2
Total: 2n?2 4+ 2Nn? = (2 4+ 2N)n? ~ 2Nn?

N is usually much larger than 2, so we get
approximately 2Nn? memory references

Given: 2Nn?, how do we minimize
memory references?

Choose as small as possible N (ie larger blocks)
Constraint for size of N:
We should be able to fit one ($x%) block each
for A, B, and C simultaneously

This lets us load into fast memory all the data

needed to iterate and perform operations at the
innermost loop for k=11ton

Thus, M = 3 (%)2

‘ N:n\/E
M

How efficient is the blocked
algorithm?

Memory references: 2 Nn?
Number of floating point operations: 2n3

Select N to be approx n \/%

Thus we get:

2n3 N
~oNnz ~ f

How efficient is the blocked
algorithm?

@

0(VM)

q grows as M grows: more efficient with larger
cache/fast memory

Grows independently of n: fast for any matrix
Size nxn

Additional remarks on blocked
algorithm

It can be shown that the algorithm is
asymptotically optimal

Real code will have to handle asymmetric
matrices — optimal block size may not be
square

Cache and register structure of machine will
affect the best shapes of submatrices

Try it yourself!

Implement MMM with and without blocking
‘ Use large matrices (say, n=1000)
Compare performance / runtimes

\ 4

There are other ways to optimize
MMM

Only a few methods are discussed in the
course (arrangement of loops, and blocking)
Other methods are out there
Can we transpose one matrix first then iterate
column-wise or row-wise for both?
Strassen algorithm with 0(n%807355)
Coppersmith-Winograd algorithm with
0(n2375477)
Often, optimizations make code harder to read
but improve cache behavior

Final words

MMM is at the heart of many linear algebra

algorithms
Achieving an optimized MMM will improve

performance of many applications

