CoE 163

Computing Architectures and Algorithms

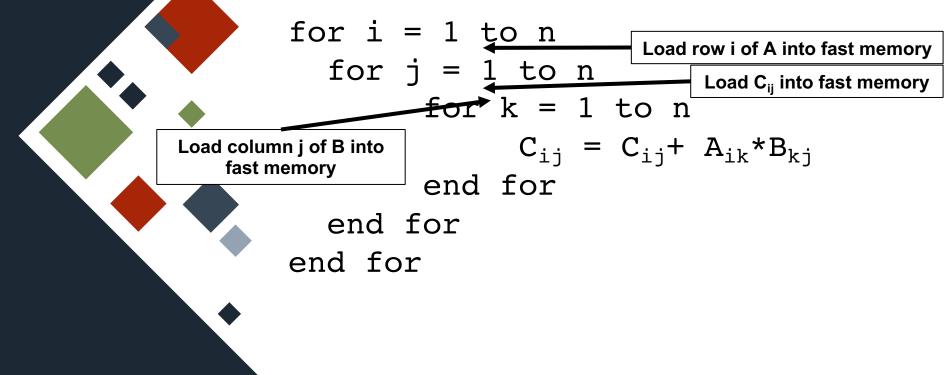
Matrix-Matrix Multiplication (part 2)

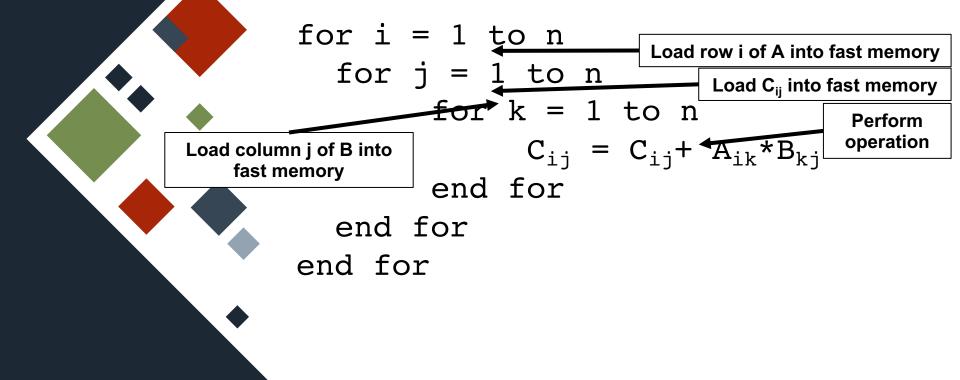
for i = 1 to n
for j = 1 to n
for k = 1 to n
$$C_{ij} = C_{ij} + A_{ik} + B_{kj}$$

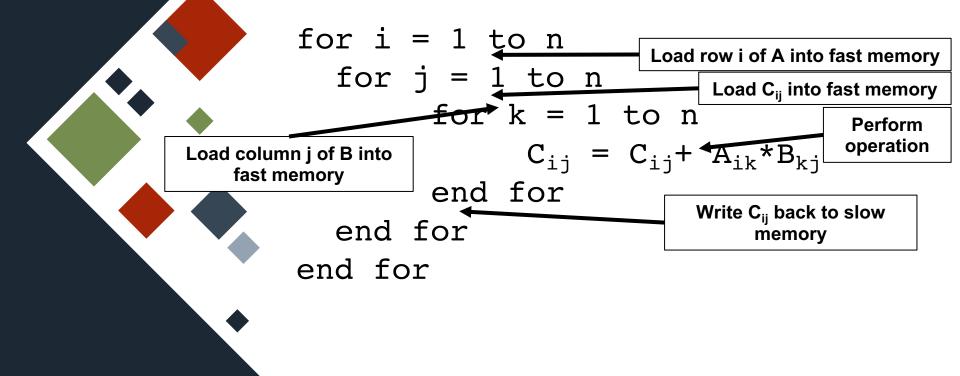
end for
end for
end for

for i = 1 to n
for j = 1 to n
for k = 1 to n
$$C_{ij} = C_{ij} + A_{ik} + B_{kj}$$

end for
end for
end for







Is there a way to make our MMM algorithm more efficient in terms of memory use?

First let's analyze the performance of our algorithm

Assumptions about computer archi

2 levels of memory: slow and fast Slow memory

- Assume column major
- Large enough to store $3 n \times n$ matrices, A, B, and C

Fast memory

0

0

- Only contains M words where $2n < M \ll n^2$
- Cannot contain an entire $n \times n$ matrix
- Can contain at least 2 matrix columns or rows

Slow memory can contain 2 rows of A in fast memory

Suppose n = 10, and M = 64Example shows 4-word cache S

	n	е

Ο

Ο

<i>a</i> ₁₁	
<i>a</i> ₂₁	
<i>a</i> ₃₁	
<i>a</i> ₇₁	
a ₈₁	
a ₉₁	
a ₁₀₁	

Matrix A stored column-
wise in slow memory

Line number	4 words per cache line						
х	<i>a</i> ₁₁	<i>a</i> ₂₁	<i>a</i> ₃₁	<i>a</i> ₄₁			
x+1	<i>a</i> ₉₁	<i>a</i> _{10 1}	<i>a</i> ₁₂	<i>a</i> ₂₂			
x+2	<i>a</i> ₁₃	a ₂₃	<i>a</i> ₃₃	a ₄₃			
x+3	a ₉₃	a ₁₀₃	<i>a</i> ₁₄	a ₂₄			
x+4	<i>a</i> ₁₅	<i>a</i> ₂₅	a_{35}	a ₄₅			
x+5	a_{95}	<i>a</i> _{10 5}	<i>a</i> ₁₆	a ₂₆			
x+6	<i>a</i> ₁₇	a ₂₇	<i>a</i> ₃₇	a ₄₇			
x+7	a ₉₇	a _{10 7}	<i>a</i> ₁₈	<i>a</i> ₂₈			
x+8	a ₁₉	a ₂₉	<i>a</i> ₃₉	a ₄₉			
x+9	a ₉₉	a _{10 9}	<i>a</i> _{1 10}	<i>a</i> _{2 10}			
x+10							
x+12							
x+13							
x+14							
x+15							

Fast memory with 64 words: greater than 2n, but much less than n²

Total number of memory references?

- n^2 : Move *n* elements per row of A (*n*×*n*) into fast memory, keep it there until no longer needed
- n^3 : Move n elements per column of B ($n \times n$), n times (for each value of i)

0

- $2n^2$: Move each element of C into fast memory until computation completes, then move back into slow memory (2 transfers per element)
 - Thus, this algorithm involves $3n^2 + n^3$ memory references

What does this say about the performance?

Total number of memory references?

- n^2 : Move *n* elements per row of A (*n*×*n*) into fast memory, keep it there until no longer needed
- n^3 : Move n elements per column of B ($n \times n$), n times (for each value of i)

0

- $2n^2$: Move each element of C into fast memory until computation completes, then move back into slow memory (2 transfers per element)
 - Thus, this algorithm involves $3n^2 + n^3$ memory references

Execution time grows approx. cubically as n increases

How efficient is the algorithm?

- f number of floating point operations
 - ° 3 nested loops that iterate from 1 to n, 2 operations at innermost loop, thus $f = 2n^3$
- Let q = ratio of f to memory references

$$q = 2n^3/(3n^2 + n^3)$$

0

- If n is very large, $q \approx 2$ (try solving for q when n = 500)
- Approx only 2 operations per memory reference

Is there a way to improve this?

MMM algorithm with blocking

Costly: row traversal on row-major memory

- 2 columns of B involves data that are close to each other OK!
- Use up many cache lines for 2 rows of A NOT OK!
- MMM operation has inherent problem:
 - One matrix is traversed row-wise, the other column-wise
 - Whether memory is row- or columnmajor, we do costly cache transfers

Line number	4 words per cache line					
х	<i>a</i> ₁₁	<i>a</i> ₂₁	<i>a</i> ₃₁	<i>a</i> ₄₁		
x+1	<i>a</i> ₉₁	<i>a</i> ₁₀₁	<i>a</i> ₁₂	a ₂₂		
x+2	<i>a</i> ₁₃	a ₂₃	<i>a</i> ₃₃	a _{4 3}		
x+3	a ₉₃	<i>a</i> _{10 3}	<i>a</i> ₁₄	a ₂₄		
x+4	<i>a</i> ₁₅	<i>a</i> ₂₅	<i>a</i> ₃₅	<i>a</i> ₄₅		
x+5	a ₉₅	<i>a</i> _{10 5}	<i>a</i> ₁₆	a ₂₆		
x+6	<i>a</i> ₁₇	a ₂₇	<i>a</i> ₃₇	a ₄₇		
x+7	a ₉₇	a _{10 7}	<i>a</i> ₁₈	<i>a</i> ₂₈		
x+8	<i>a</i> ₁₉	a ₂₉	<i>a</i> ₃₉	a ₄₉		
x+9	a ₉₉	a _{10 9}	<i>a</i> _{1 10}	<i>a</i> _{2 10}		
x+10	<i>b</i> ₁₁	<i>b</i> ₂₁	<i>b</i> ₃₁	b41		
x+12	<i>b</i> ₅₁	<i>b</i> ₆₁	b ₇₁	b ₈₁		
x+13	b ₉₁	<i>b</i> ₁₀₁	<i>b</i> ₁₂	b ₂₂		
x+14	b ₃₂	b ₄₂	b ₅₂	b ₆₂		
x+15	b ₇₂	b ₈₂	b ₉₂	<i>b</i> ₁₀₂		

Costly: traversal with long *strides*

- Innermost loop of algorithm uses an **entire row** of matrix A and **entire columns** of matrix B – Long strides
- Uses up many cache lines for a few operations
 - Shorter strides are often
 - better

Line number	4 words per cache line						
х	<i>a</i> ₁₁	<i>a</i> ₂₁	<i>a</i> ₃₁	<i>a</i> ₄₁			
x+1	<i>a</i> ₉₁	<i>a</i> _{10 1}	<i>a</i> ₁₂	a ₂₂			
x+2	<i>a</i> ₁₃	a ₂₃	<i>a</i> ₃₃	a _{4 3}			
x+3	a ₉₃	a ₁₀₃	<i>a</i> ₁₄	a ₂₄			
x+4	<i>a</i> ₁₅	<i>a</i> ₂₅	<i>a</i> ₃₅	a ₄₅			
x+5	a_{95}	<i>a</i> _{10 5}	<i>a</i> ₁₆	a ₂₆			
x+6	a ₁₇	a ₂₇	<i>a</i> ₃₇	a ₄₇			
x+7	a ₉₇	a ₁₀₇	<i>a</i> ₁₈	<i>a</i> ₂₈			
x+8	<i>a</i> ₁₉	a ₂₉	<i>a</i> ₃₉	a ₄₉			
x+9	a ₉₉	a _{10 9}	<i>a</i> _{1 10}	<i>a</i> _{2 10}			
x+10	<i>b</i> ₁₁	<i>b</i> ₂₁	b ₃₁	b ₄₁			
x+12	b_{51}	<i>b</i> ₆₁	b ₇₁	b ₈₁			
x+13	b ₉₁	<i>b</i> ₁₀₁	<i>b</i> ₁₂	b ₂₂			
x+14	b ₃₂	b ₄₂	b ₅₂	b ₆₂			
x+15	b ₇₂	b ₈₂	b ₉₂	b ₁₀₂			

Costly: traversal with long *strides*

YOU DIDN'T HAVE TO LOAD THE ENTIRE ROW ALL AT ONCE

WHAT IF I TOLD YOU

Morpheus, from "The Matrix"

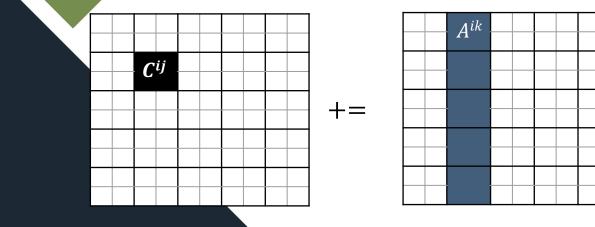
Line number	4 words per cache line					
x	<i>a</i> ₁₁	<i>a</i> ₂₁	<i>a</i> ₃₁	<i>a</i> ₄₁		
x+1	a ₉₁	a_{91} a_{101}		a ₂₂		
x+2	<i>a</i> ₁₃	a ₂₃	<i>a</i> ₃₃	a _{4 3}		
x+3	a ₉₃	a ₁₀₃	<i>a</i> ₁₄	a ₂₄		
x+4	<i>a</i> ₁₅	<i>a</i> ₂₅	<i>a</i> ₃₅	<i>a</i> ₄₅		
x+5	a ₉₅	a _{10 5}	<i>a</i> ₁₆	a ₂₆		
x+6	<i>a</i> ₁₇	a ₂₇	<i>a</i> ₃₇	a ₄₇		
x+7	a ₉₇	a _{10 7}	<i>a</i> ₁₈	<i>a</i> ₂₈		
x+8	a ₁₉	a ₂₉	a ₃₉	<i>a</i> ₄₉		
x+9	a ₉₉	a _{10 9}	<i>a</i> _{1 10}	<i>a</i> _{2 10}		
x+10	<i>b</i> ₁₁	<i>b</i> ₂₁	<i>b</i> ₃₁	b ₄₁		
x+12	<i>b</i> ₅₁	b_{61}	b ₇₁	b ₈₁		
x+13	b ₉₁	<i>b</i> ₁₀₁	<i>b</i> ₁₂	b ₂₂		
x+14	b ₃₂	b ₄₂	b ₅₂	b ₆₂		
x+15	b ₇₂	b ₈₂	b ₉₂	b ₁₀₂		

Let's use blocking

Let's break C into an $(N \times N)$ block matrix with $\left(\frac{n}{N} \times \frac{n}{N}\right)$ blocks

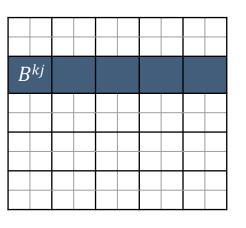
*

- C^{ij} , and A and B are similarly partitioned
- Example below when N = 5 and n = 10



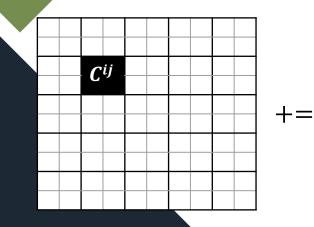
0

0

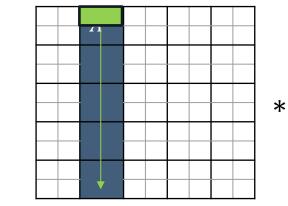


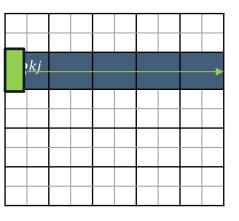
Let's use blocking

 $\frac{n}{N}$ length slices of rows of A are multiplied with $\frac{n}{N}$ height segments of columns of B as shown below



0





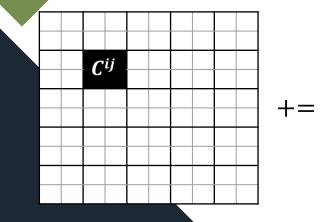
Blocking gives us shorter strides

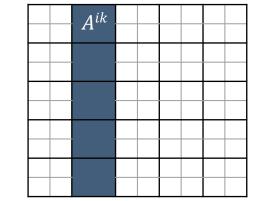
- We break up the MMM computation into smaller chunks
- Traverse with shorter strides across our rows and columns
- Diagram shows 2x2 sub-blocks for A, B, and C in cache
- We don't waste so many cache lines per operation!

Line number	4 words per cache line						
х	<i>a</i> ₁₁	<i>a</i> ₂₁	<i>a</i> ₃₁	<i>a</i> ₄₁			
x+1	a ₉₁	<i>a</i> _{10 1}	<i>a</i> ₁₂	a ₂₂			
x+2	<i>b</i> ₁₁	<i>b</i> ₂₁	b ₃₁	<i>b</i> ₄₁			
x+3	b ₉₁	<i>b</i> ₁₀₁	<i>b</i> ₁₂	<i>b</i> ₂₂			
x+4	<i>C</i> ₁₁	<i>C</i> ₂₁	C ₃₁	C ₄₁			
x+5	C ₉₁	<i>C</i> ₁₀₁	<i>C</i> ₁₂	<i>C</i> ₂₂			
x+6							
x+7							
x+8							
x+9							
x+10							
x+12							
x+13							
x+14							
x+15							

```
for i = 1 to N
for j = 1 to N
for k = 1 to N
C^{ij} = C^{ij} + A^{ik} \cdot B^{kj}
end for
end for
```

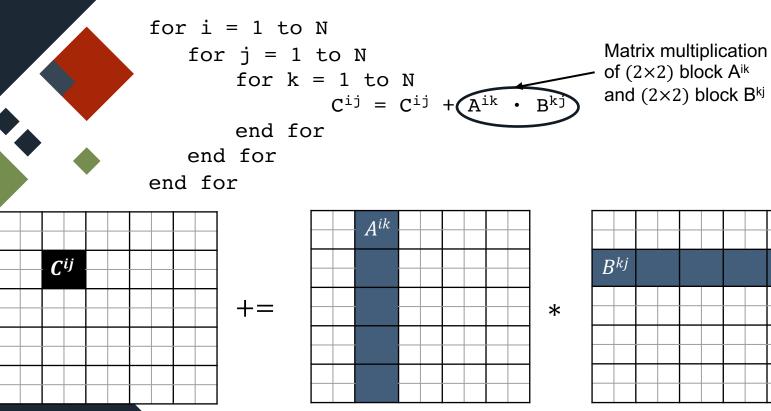
end for

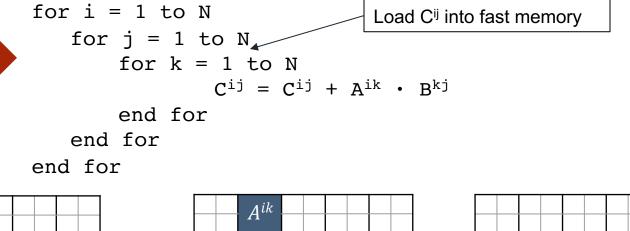


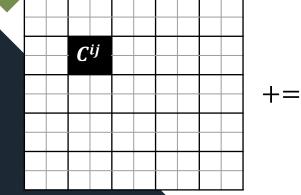


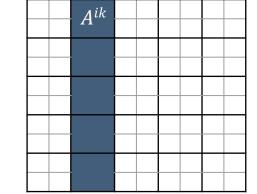
*

B	<i>kj</i>				

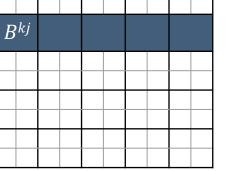


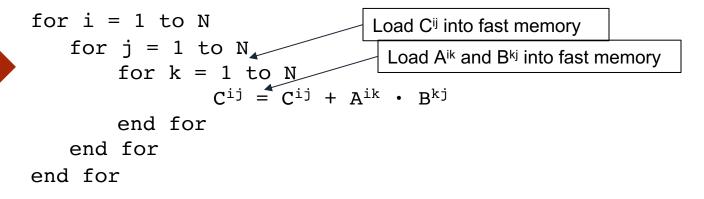


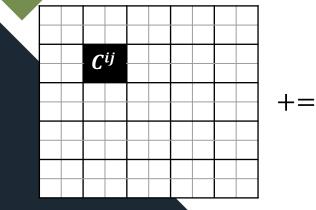


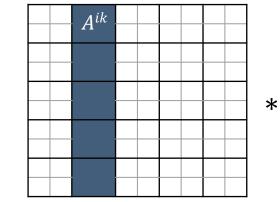


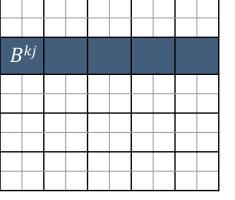
*

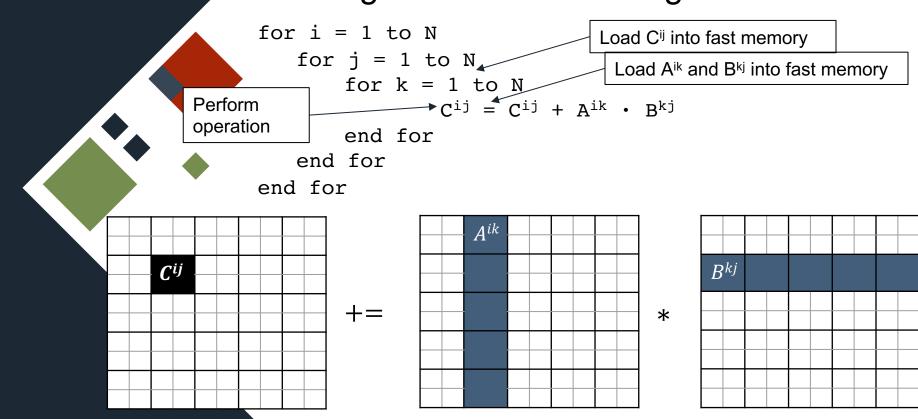


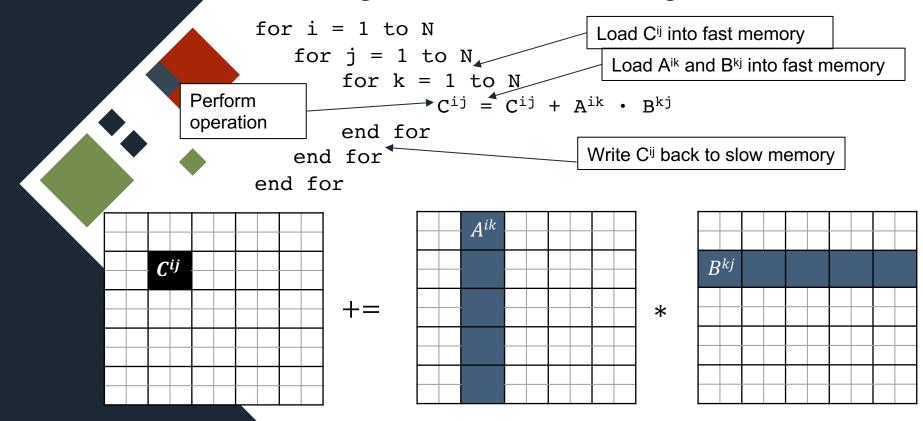












How many memory references if blocking is used?

Read each $(\frac{n}{N} \times \frac{n}{N})$ block of A N^3 times:

$$\circ \quad N^3(\frac{n^2}{N^2}) = Nn^2$$

Read each $(\frac{n}{N} \times \frac{n}{N})$ block of B N³ times:

• **Nn**²

Read and write each $\left(\frac{n}{N} \times \frac{n}{N}\right)$ block of C

once

- n^2 (read) + n^2 (write) = $2n^2$
- Total: $2n^2 + 2Nn^2 = (2 + 2N)n^2 \approx 2Nn^2$
 - N is usually much larger than 2, so we get approximately 2Nn² memory references

How many memory references if blocking is used?

Read each $(\frac{n}{N} \times \frac{n}{N})$ block of A N^3 times:

$$\circ \quad N^3(\frac{n^2}{N^2}) = Nn^2$$

Read each $(\frac{n}{N} \times \frac{n}{N})$ block of B N³ times:

• **Nn**²

Read and write each $\left(\frac{n}{N} \times \frac{n}{N}\right)$ block of C

once

- n^2 (read) + n^2 (write) = $2n^2$
- Total: $2n^2 + 2Nn^2 = (2 + 2N)n^2 \approx 2Nn^2$
 - N is usually much larger than 2, so we get approximately 2Nn² memory references

Given: $2Nn^2$, how do we minimize memory references?

- Choose as small as possible N (ie larger blocks) Constraint for size of N:
 - We should be able to fit one $(\frac{n}{N} \times \frac{n}{N})$ block each for A, B, and C simultaneously
 - This lets us load into fast memory all the data needed to iterate and perform operations at the innermost loop for k=1 to n

• Thus,
$$M \ge 3 \left(\frac{n}{N}\right)^2$$

 $N = n \sqrt{\frac{3}{M}}$

Ο

How efficient is the blocked algorithm?

Memory references: $2Nn^2$ Number of floating point operations: $2n^3$

Select N to be approx $n \sqrt{\frac{3}{M}}$

Thus we get:

0

0

0

$$q \approx \frac{2n^3}{2Nn^2} \approx \frac{n}{n\sqrt{\frac{3}{M}}} \approx \sqrt{\frac{M}{3}}$$

How efficient is the blocked algorithm?

• $O(\sqrt{M})$

 $q \approx \sqrt{\frac{M}{3}}$

0

- q grows as M grows: more efficient with larger cache/fast memory
- Grows independently of n: fast for any matrix size $n \times n$

Additional remarks on blocked algorithm

0

0

- It can be shown that the algorithm is asymptotically optimal
- Real code will have to handle asymmetric matrices optimal block size may not be square

Cache and register structure of machine will affect the best shapes of submatrices

Try it yourself!

- Implement MMM with and without blocking
- Use large matrices (say, n=1000)
- Compare performance / runtimes

There are other ways to optimize MMM

- Only a few methods are discussed in the course (arrangement of loops, and blocking) Other methods are out there
 - Can we transpose one matrix first then iterate column-wise or row-wise for both?
 - Strassen algorithm with $O(n^{2.807355})$
 - Coppersmith–Winograd algorithm with $O(n^{2.375477})$
 - Often, optimizations make code harder to read but improve cache behavior

Final words

0

0

- MMM is at the heart of many linear algebra algorithms
- Achieving an optimized MMM will improve performance of many applications