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MAXIMIZING 
ALGORITHMS

2

“The real problem is that 
programmers have spent far too 
much time worrying about efficiency 
in the wrong places and at the wrong 
times; premature optimization is the 
root of all evil (or at least most of it) in 
programming.”

- Donald Knuth, “The Art of 
Computer Programming”



MAXIMIZING 
ALGORITHMS
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It is much more important to 
create correct code than efficient 
code. Write correctly now, speed 
it up later.

Optimizations, however, are 
useful especially if a lot of the 
running time is spent on some 
piece of code.



AMDAHL’S LAW
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◦ Expression for the maximum 
expected improvement of 
the whole system if a part of 
it is optimized

◦ Usually used in parallel 
programming, but we can 
still use it for our 
“non-parallel” programs



AMDAHL’S LAW
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If f_E (percent) of the code has 
been sped-up by f_I (times), then 
the whole program will have a 
maximum speedup of S (times).



AMDAHL’S LAW
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Suppose that we have a 
raytracer program with the 
intersection algorithm (around 
40% of the whole program) 
sped-up by 5 times.



AMDAHL’S LAW
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Was it worth it? Yes, if that code 
is commonly used.



GAINING SPEED-UPS
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Knowing some basic code 
optimizations will come a long 
way in squeezing out less time 
from your code.

Code for correctness, but make 
obvious optimizations when 
opportunity comes.



C/C++ SPEED HACKS
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◦ Use bit shift when 
multiplying or dividing by 
two

◦ Simplify math expressions to 
reduce the number of 
operations

◦ Take advantage of 
short-circuit logic because 
conditionals are expensive



C/C++ SPEED HACKS
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◦ Prefer pre-increment over 
post-increment

◦ Prefer iteration over 
recursion since function calls 
use the stack pointer

◦ Prefer pass-by-reference 
over pass-by-value

◦ … a lot more!



PYTHON SPEED 
HACKS
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◦ Some code parts may 
benefit from being coded 
into C and linked into Python

◦ Convert loops to list 
comprehensions or 
generators

◦ Take advantage of 
short-circuit logic

◦ … and many more!



HOW WERE THEY 
DISCOVERED?
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◦ Knowledge of assembly and 
the compiler

◦ Knowledge of computer 
architecture and 
microarchitectures

◦ Time and space profiling



GCC
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◦ The GNU Compiler 
Collection (GCC) is an 
optimizing compiler

◦ GCC has initially supported 
only C in 1987, but can now 
compile Go and D, among 
others

◦ It is an essential part of the 
GNU toolchain
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GCC COMPILATION PIPELINE

Preprocessor

Compiler

Assembler

Linker

.c

.i

.s

.oOpcode



GCC COMPILER
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GCC compiles code in three-stages

◦ Front - syntax checking and 
parsing to an intermediate 
representation

◦ Middle - platform-independent 
optimization

◦ Back - platform-dependent 
optimization and conversion to 
assembly
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GCC COMPILER

Syntax/Semantic Checker

Platform-independent 
Optimizer

Platform-dependent 
Optimizer

.i

.s



GCC: ASSEMBLY
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With the structure of GCC, it is 
possible to generate the 
intermediate preprocessor and 
assembly codes.

We can investigate how our code 
works at the low-level by reading 
the resulting assembly code.
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GCC: ASSEMBLY

int main() {
    int x[] = {1, 6, 3};
    return x[0] + x[1] + x[2];
}

push    rbp
mov     rbp, rsp
mov     DWORD PTR [rbp-12], 1
mov     DWORD PTR [rbp-8], 6
mov     DWORD PTR [rbp-4], 3
mov     edx, DWORD PTR [rbp-12]
mov     eax, DWORD PTR [rbp-8]
add     edx, eax
mov     eax, DWORD PTR [rbp-4]
add     eax, edx
pop     rbp
ret

gcc -S arrays.c

Intel ASM



CONSIDER...
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Let’s verify whether bit shifting is 
faster than division with a power 
of 2.
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INTEGER DIVISION

int x = 16;
int y = x / 4;

mov DWORD PTR [rbp-4], 16
mov eax, DWORD PTR [rbp-4]
lea edx, [rax+3]
test eax, eax
cmovs   eax, edx
sar eax, 2
mov DWORD PTR [rbp-8], eax

gcc -S div2.c

Extra test for 
integer division

Intel ASM
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BIT SHIFTING BY TWO

int x = 16;
int y = x >> 2;

mov DWORD PTR [rbp-4], 16
mov eax, DWORD PTR [rbp-4]
sar eax, 2
mov DWORD PTR [rbp-8], eax

gcc -S div2.c

No extra test!

Intel ASM



DIVISION BY POWER 
OF TWO

22

◦ When using integer division, the 
code still has to check whether 
the number is 0

◦ Load instructions are slow, but 
bitwise operations are fast

◦ Bit shifting is marginally faster 
than division by a power of two



ASSEMBLY IN C/C++
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◦ GCC supports writing and 
compiling of assembly code 
within C/C++

◦ This is useful for systems 
development where some 
sections would run faster in 
assembly
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INLINE ASSEMBLY IN C/C++

Assembly 
instructions 
separated by 
newlines

Output 
arguments

Input arguments

Registers to be 
overwritten by 
instructions

asm(s : outs : ins : clobbers); 
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ASSEMBLY IN C/C++

int a = 3, b = 3, c;   

asm(

    "mov %1, %%eax\n"

    "mov %2, %%ebx\n"

    "add %%eax, %%ebx\n"

    "mov %%ebx, %0\n"

    : "=r" (c)

    : "r" (a), "r" (b)

    : "%eax", "%ebx"

 );

Add a and b

AT&T ASM



ASSEMBLY IN C/C++

26

Although the feature is powerful, 
it is relatively easier to write a 
whole function in assembly.

It is also possible to write the 
assembly code separately as an 
.s file.
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ASSEMBLY IN C/C++

long add_me(long in, long in2); /* Prototype */

asm( /* Assembly function body */

    "add_me:\n"

    "   mov %rdi, %rax\n"

    "   add %rsi, %rax\n"

    "   ret\n"

);

int main(void) {

   return add_me(3, 5);

}

Add in and in2

AT&T ASM



TIME PROFILING IN 
C/C++
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◦ Several binaries and software 
can be used to profile C/C++ 
Code

◦ Simplest is to use the built-in 
profiler that came with GCC



TIME PROFILING IN 
C/C++
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gprof

◦ Old profiler that uses 
statistical sampling to 
measure runtime

◦ Generates a decent report on 
the runtime per function of a 
program

◦ May be inaccurate since 
sampling time is usually 0.01s
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TIME PROFILING IN C/C++

$ gcc add_me.c -o add_me -pg
$ ./add_me
$ gprof add_me gmon.out

gprof

● Compile code as normal with flags -pg
● Run programas normal and it will generate profile data named 

gmon.out  in the directory where you are running the program
● Run gprof with the executable and profile data as arguments
● gprof generates a report on standard output - use redirection to 

output into a file
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TIME PROFILING IN C/C++

Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 33.34      0.02     0.02     7208     0.00     0.00  open
 16.67      0.03     0.01      244     0.04     0.12  offtime
 16.67      0.04     0.01        8     1.25     1.25  memccpy
 16.67      0.05     0.01        7     1.43     1.43  write
[...]

gprof - flat profile*

● Shows time spent running each function of a program
● Broken down into cumulative, number of calls, and percentage of 

program runtime executing such function

* not the profile of the add_me function
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TIME PROFILING IN C/C++

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 
seconds

index % time    self  children    called     name
                                                 <spontaneous>
[1]    100.0    0.00    0.05                 start [1]
                0.00    0.05       1/1           main [2]
                0.00    0.00       1/2           on_exit [28]
                0.00    0.00       1/1           exit [59]
-----------------------------------------------
                0.00    0.05       1/1           start [1]
[2]    100.0    0.00    0.05       1         main [2]
                0.00    0.05       1/1           report [3]
[...]

gprof - call graph*

● Shows time spent running a function and functions that it called during 
execution

● Useful for knowing a bit more information on where a program spends 
most of its runtime

* not the profile of the add_me function



TIME PROFILING IN 
C/C++
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perf

◦ Newer general-purpose 
profiler for the Linux kernel

◦ Has a command line interface 
for viewing reports and even 
assembly code
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TIME PROFILING IN C/C++

$ gcc add_me.c -o add_me
$ perf record -g ./add_me
$ perf report

perf

● Compile code as normal
● Run program through perf, and it will generate profile data 

named perf.data  in the directory where you are running the 
program

● Run perf report  to view the report
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TIME PROFILING IN C/C++

perf - call graph

● Shows percentage time spent running a function and functions that it 
called during execution

● Shows the different libraries and functions called during execution
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TIME PROFILING IN C/C++

perf - disassembler

● Shows percentage time spent running each assembly instruction during 
execution

● Useful for knowing a bit more information on where a program spends 
most of its runtime



CPYTHON
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◦ CPython is the reference 
implementation of Python 
since 1994

◦ It is an interpreter with an 
internal helper compiler

◦ It can either execute programs 
on-the-fly, or compile it into a 
platform-independent 
bytecode
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CPYTHON INTERPRETATION 
PIPELINE

Compiler

Virtual Machine

Library

.py

.pycrun



CPYTHON: 
“ASSEMBLY”
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Since Python is interpreted, it 
generates a 
platform-independent bytecode 
instead of assembly code.

We can investigate how our code 
works at the intermediate level by 
reading the resulting bytecode.



40

CPYTHON: BYTECODE

def main():
x = [1, 6, 3]
return x[0] + x[1] + x[2]

2       0 LOAD_CONST           1 (1)
          2 LOAD_CONST           2 (6)
          4 LOAD_CONST           3 (3)
          6 BUILD_LIST           3
          8 STORE_FAST           0 (x)
3      10 LOAD_FAST            0 (x)
         12 LOAD_CONST           4 (0)
         14 BINARY_SUBSCR
         [...]
         32 RETURN_VALUE

dis.dis(main)
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CPYTHON: BYTECODE

Line number in 
source code

Instruction index

Opcode

Oparg

Opcode result

2  0 LOAD_CONST 1 (1)

   2 LOAD_CONST 2 (6)



CONSIDER...

42

Let’s check the fastest way to 
add all the numbers in a list.
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NORMAL LOOP

sum_all = 0
    
for i in range(len(num_list)):
    sum_all += num_list[i]
    return sum_all

2           0 LOAD_CONST               1 (0)
            2 STORE_FAST               1 (sum_all)
4           4 SETUP_LOOP              34 (to 40)
              [...]
           20 STORE_FAST               2 (i)
5          22 LOAD_FAST                1 (sum_all)
              [...]
           32 STORE_FAST               1 (sum_all)
7          34 LOAD_FAST                1 (sum_all)
              [...]
           42 RETURN_VALUE

dis.dis(add_all)

Too many 
operations!
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FUNCTOOLS REDUCE

return reduce(lambda a, b: a + b, num_list)

2           0 LOAD_GLOBAL              0 (reduce)
            2 LOAD_CONST               1 (...)
            4 LOAD_CONST               2 (...)
            6 MAKE_FUNCTION            0
            8 LOAD_FAST                0 (num_list)
           10 CALL_FUNCTION            2
           12 RETURN_VALUE

dis.dis(add_all)

Much better!
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BUILT-IN SUM

return sum(num_list)

2           0 LOAD_GLOBAL              0 (sum)
            2 LOAD_FAST                0 (num_list)
            4 CALL_FUNCTION            1
            6 RETURN_VALUE

dis.dis(add_all)

This is the 
best.



SUMMING A LIST
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◦ Constructing a for-loop requires 
set-up on the interpreter, and is 
relatively slow

◦ “Idiomatic” code, such as list 
comprehensions, runs faster 
than for-loops

◦ Built-in functions are the fastest 
due to them being globally 
accessible and leveraging a C 
backend (for CPython)



TIME PROFILING IN 
PYTHON
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◦ There are several built-in 
modules and functions in 
Python for the purpose

◦ Simplest is to record the start 
and end time of executing a 
code section
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TIME PROFILING IN PYTHON

from timeit import timeit

timeit(‘’’
sum(int_list)
‘’’, setup=’’’
import numpy as np; int_list = np.random.randint(1, 100, 
(1000,));
‘’’)

timeit module

● Simplest timer for very small code snippets
● Runs the snippet 1 million times by default
● All code should be fed as strings
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TIME PROFILING IN PYTHON

import time
import numpy as np

start_t = time.time()

int_list = np.random.randint(1, 100, (1000,))
add_all(int_list)

end_t = time.time()
print(f’Time elapsed: {end_t - start_t}s’)

time module

● Import the time library and get the time at appropriate instances of the 
program

● Simple and fast to use



50

TIME PROFILING IN PYTHON

import cProfile
import numpy as np

int_list = np.random.randint(1, 100, (1000,))
cProfile.run(‘’’
for i in range(1000000):
    add_all(int_list)
‘’’)

cProfile module

● Deterministic profiler with advanced break-down of time elapsed for each 
component

● Has an accuracy only up to 0.001s
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TIME PROFILING IN PYTHON

        2000003 function calls in 1.335 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
  1000000    0.938    0.000    1.026    0.000 <ipython-input-38-94ea3e02d399>:1(add_all)
        1    0.309    0.309    1.335    1.335 <string>:2(<module>)
        1    0.000    0.000    1.335    1.335 {built-in method builtins.exec}
  1000000    0.089    0.000    0.089    0.000 {built-in method builtins.len}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

cProfile output

● Broken down by (sub)functions called
● Contains runtime in seconds and number of calls to that function during 

the whole profiling



TIPS

52

◦ Make the common case fast
◦ Program in assembly as a 

last resort
◦ Premature optimization is 

bad, but obvious 
optimization should be done

◦ Optimization takes twice the 
time as normal 
programming



TIPS
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◦ Profile different 
implementations to 
determine the fastest one

◦ Find the best profiler, or 
profiling strategy, according 
to your needs



RESOURCES
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◦ Raytracer C/C++ optimization 
tips from Clemson University

◦ C/C++ to Assembly 
optimization resources from 
Agner Fog

◦ Compiler Explorer to check 
compilation results in C, C++, 
Python, and many more

https://people.cs.clemson.edu/~dhouse/courses/405/papers/optimize.pdf
https://www.agner.org/optimize/
http://compiler-explorer.com


RESOURCES

55

◦ Gprof resource from the 
University of Utah

◦ Short blog on perftools 
usage

https://web.archive.org/web/20141129061523/http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html#SEC2
https://dev.to/etcwilde/perf---perfect-profiling-of-cc-on-linux-of
https://dev.to/etcwilde/perf---perfect-profiling-of-cc-on-linux-of
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