
CoE 163
Computing Architectures and Algorithms

02c: High-Level Optimization

MAXIMIZING
ALGORITHMS

2

“The real problem is that
programmers have spent far too
much time worrying about efficiency
in the wrong places and at the wrong
times; premature optimization is the
root of all evil (or at least most of it) in
programming.”

- Donald Knuth, “The Art of
Computer Programming”

MAXIMIZING
ALGORITHMS

3

It is much more important to
create correct code than efficient
code. Write correctly now, speed
it up later.

Optimizations, however, are
useful especially if a lot of the
running time is spent on some
piece of code.

AMDAHL’S LAW

4

◦ Expression for the maximum
expected improvement of
the whole system if a part of
it is optimized

◦ Usually used in parallel
programming, but we can
still use it for our
“non-parallel” programs

AMDAHL’S LAW

5

If f_E (percent) of the code has
been sped-up by f_I (times), then
the whole program will have a
maximum speedup of S (times).

AMDAHL’S LAW

6

Suppose that we have a
raytracer program with the
intersection algorithm (around
40% of the whole program)
sped-up by 5 times.

AMDAHL’S LAW

7

Was it worth it? Yes, if that code
is commonly used.

GAINING SPEED-UPS

8

Knowing some basic code
optimizations will come a long
way in squeezing out less time
from your code.

Code for correctness, but make
obvious optimizations when
opportunity comes.

C/C++ SPEED HACKS

9

◦ Use bit shift when
multiplying or dividing by
two

◦ Simplify math expressions to
reduce the number of
operations

◦ Take advantage of
short-circuit logic because
conditionals are expensive

C/C++ SPEED HACKS

10

◦ Prefer pre-increment over
post-increment

◦ Prefer iteration over
recursion since function calls
use the stack pointer

◦ Prefer pass-by-reference
over pass-by-value

◦ … a lot more!

PYTHON SPEED
HACKS

11

◦ Some code parts may
benefit from being coded
into C and linked into Python

◦ Convert loops to list
comprehensions or
generators

◦ Take advantage of
short-circuit logic

◦ … and many more!

HOW WERE THEY
DISCOVERED?

12

◦ Knowledge of assembly and
the compiler

◦ Knowledge of computer
architecture and
microarchitectures

◦ Time and space profiling

GCC

13

◦ The GNU Compiler
Collection (GCC) is an
optimizing compiler

◦ GCC has initially supported
only C in 1987, but can now
compile Go and D, among
others

◦ It is an essential part of the
GNU toolchain

14

GCC COMPILATION PIPELINE

Preprocessor

Compiler

Assembler

Linker

.c

.i

.s

.oOpcode

GCC COMPILER

15

GCC compiles code in three-stages

◦ Front - syntax checking and
parsing to an intermediate
representation

◦ Middle - platform-independent
optimization

◦ Back - platform-dependent
optimization and conversion to
assembly

16

GCC COMPILER

Syntax/Semantic Checker

Platform-independent
Optimizer

Platform-dependent
Optimizer

.i

.s

GCC: ASSEMBLY

17

With the structure of GCC, it is
possible to generate the
intermediate preprocessor and
assembly codes.

We can investigate how our code
works at the low-level by reading
the resulting assembly code.

18

GCC: ASSEMBLY

int main() {
 int x[] = {1, 6, 3};
 return x[0] + x[1] + x[2];
}

push rbp
mov rbp, rsp
mov DWORD PTR [rbp-12], 1
mov DWORD PTR [rbp-8], 6
mov DWORD PTR [rbp-4], 3
mov edx, DWORD PTR [rbp-12]
mov eax, DWORD PTR [rbp-8]
add edx, eax
mov eax, DWORD PTR [rbp-4]
add eax, edx
pop rbp
ret

gcc -S arrays.c

Intel ASM

CONSIDER...

19

Let’s verify whether bit shifting is
faster than division with a power
of 2.

20

INTEGER DIVISION

int x = 16;
int y = x / 4;

mov DWORD PTR [rbp-4], 16
mov eax, DWORD PTR [rbp-4]
lea edx, [rax+3]
test eax, eax
cmovs eax, edx
sar eax, 2
mov DWORD PTR [rbp-8], eax

gcc -S div2.c

Extra test for
integer division

Intel ASM

21

BIT SHIFTING BY TWO

int x = 16;
int y = x >> 2;

mov DWORD PTR [rbp-4], 16
mov eax, DWORD PTR [rbp-4]
sar eax, 2
mov DWORD PTR [rbp-8], eax

gcc -S div2.c

No extra test!

Intel ASM

DIVISION BY POWER
OF TWO

22

◦ When using integer division, the
code still has to check whether
the number is 0

◦ Load instructions are slow, but
bitwise operations are fast

◦ Bit shifting is marginally faster
than division by a power of two

ASSEMBLY IN C/C++

23

◦ GCC supports writing and
compiling of assembly code
within C/C++

◦ This is useful for systems
development where some
sections would run faster in
assembly

24

INLINE ASSEMBLY IN C/C++

Assembly
instructions
separated by
newlines

Output
arguments

Input arguments

Registers to be
overwritten by
instructions

asm(s : outs : ins : clobbers);

25

ASSEMBLY IN C/C++

int a = 3, b = 3, c;

asm(

 "mov %1, %%eax\n"

 "mov %2, %%ebx\n"

 "add %%eax, %%ebx\n"

 "mov %%ebx, %0\n"

 : "=r" (c)

 : "r" (a), "r" (b)

 : "%eax", "%ebx"

);

Add a and b

AT&T ASM

ASSEMBLY IN C/C++

26

Although the feature is powerful,
it is relatively easier to write a
whole function in assembly.

It is also possible to write the
assembly code separately as an
.s file.

27

ASSEMBLY IN C/C++

long add_me(long in, long in2); /* Prototype */

asm(/* Assembly function body */

 "add_me:\n"

 " mov %rdi, %rax\n"

 " add %rsi, %rax\n"

 " ret\n"

);

int main(void) {

 return add_me(3, 5);

}

Add in and in2

AT&T ASM

TIME PROFILING IN
C/C++

28

◦ Several binaries and software
can be used to profile C/C++
Code

◦ Simplest is to use the built-in
profiler that came with GCC

TIME PROFILING IN
C/C++

29

gprof

◦ Old profiler that uses
statistical sampling to
measure runtime

◦ Generates a decent report on
the runtime per function of a
program

◦ May be inaccurate since
sampling time is usually 0.01s

30

TIME PROFILING IN C/C++

$ gcc add_me.c -o add_me -pg
$./add_me
$ gprof add_me gmon.out

gprof

● Compile code as normal with flags -pg
● Run programas normal and it will generate profile data named

gmon.out in the directory where you are running the program
● Run gprof with the executable and profile data as arguments
● gprof generates a report on standard output - use redirection to

output into a file

31

TIME PROFILING IN C/C++

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 33.34 0.02 0.02 7208 0.00 0.00 open
 16.67 0.03 0.01 244 0.04 0.12 offtime
 16.67 0.04 0.01 8 1.25 1.25 memccpy
 16.67 0.05 0.01 7 1.43 1.43 write
[...]

gprof - flat profile*

● Shows time spent running each function of a program
● Broken down into cumulative, number of calls, and percentage of

program runtime executing such function

* not the profile of the add_me function

32

TIME PROFILING IN C/C++

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05
seconds

index % time self children called name
 <spontaneous>
[1] 100.0 0.00 0.05 start [1]
 0.00 0.05 1/1 main [2]
 0.00 0.00 1/2 on_exit [28]
 0.00 0.00 1/1 exit [59]

 0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
 0.00 0.05 1/1 report [3]
[...]

gprof - call graph*

● Shows time spent running a function and functions that it called during
execution

● Useful for knowing a bit more information on where a program spends
most of its runtime

* not the profile of the add_me function

TIME PROFILING IN
C/C++

33

perf

◦ Newer general-purpose
profiler for the Linux kernel

◦ Has a command line interface
for viewing reports and even
assembly code

34

TIME PROFILING IN C/C++

$ gcc add_me.c -o add_me
$ perf record -g ./add_me
$ perf report

perf

● Compile code as normal
● Run program through perf, and it will generate profile data

named perf.data in the directory where you are running the
program

● Run perf report to view the report

35

TIME PROFILING IN C/C++

perf - call graph

● Shows percentage time spent running a function and functions that it
called during execution

● Shows the different libraries and functions called during execution

36

TIME PROFILING IN C/C++

perf - disassembler

● Shows percentage time spent running each assembly instruction during
execution

● Useful for knowing a bit more information on where a program spends
most of its runtime

CPYTHON

37

◦ CPython is the reference
implementation of Python
since 1994

◦ It is an interpreter with an
internal helper compiler

◦ It can either execute programs
on-the-fly, or compile it into a
platform-independent
bytecode

38

CPYTHON INTERPRETATION
PIPELINE

Compiler

Virtual Machine

Library

.py

.pycrun

CPYTHON:
“ASSEMBLY”

39

Since Python is interpreted, it
generates a
platform-independent bytecode
instead of assembly code.

We can investigate how our code
works at the intermediate level by
reading the resulting bytecode.

40

CPYTHON: BYTECODE

def main():
x = [1, 6, 3]
return x[0] + x[1] + x[2]

2 0 LOAD_CONST 1 (1)
 2 LOAD_CONST 2 (6)
 4 LOAD_CONST 3 (3)
 6 BUILD_LIST 3
 8 STORE_FAST 0 (x)
3 10 LOAD_FAST 0 (x)
 12 LOAD_CONST 4 (0)
 14 BINARY_SUBSCR
 [...]
 32 RETURN_VALUE

dis.dis(main)

41

CPYTHON: BYTECODE

Line number in
source code

Instruction index

Opcode

Oparg

Opcode result

2 0 LOAD_CONST 1 (1)

 2 LOAD_CONST 2 (6)

CONSIDER...

42

Let’s check the fastest way to
add all the numbers in a list.

43

NORMAL LOOP

sum_all = 0

for i in range(len(num_list)):
 sum_all += num_list[i]
 return sum_all

2 0 LOAD_CONST 1 (0)
 2 STORE_FAST 1 (sum_all)
4 4 SETUP_LOOP 34 (to 40)
 [...]
 20 STORE_FAST 2 (i)
5 22 LOAD_FAST 1 (sum_all)
 [...]
 32 STORE_FAST 1 (sum_all)
7 34 LOAD_FAST 1 (sum_all)
 [...]
 42 RETURN_VALUE

dis.dis(add_all)

Too many
operations!

44

FUNCTOOLS REDUCE

return reduce(lambda a, b: a + b, num_list)

2 0 LOAD_GLOBAL 0 (reduce)
 2 LOAD_CONST 1 (...)
 4 LOAD_CONST 2 (...)
 6 MAKE_FUNCTION 0
 8 LOAD_FAST 0 (num_list)
 10 CALL_FUNCTION 2
 12 RETURN_VALUE

dis.dis(add_all)

Much better!

45

BUILT-IN SUM

return sum(num_list)

2 0 LOAD_GLOBAL 0 (sum)
 2 LOAD_FAST 0 (num_list)
 4 CALL_FUNCTION 1
 6 RETURN_VALUE

dis.dis(add_all)

This is the
best.

SUMMING A LIST

46

◦ Constructing a for-loop requires
set-up on the interpreter, and is
relatively slow

◦ “Idiomatic” code, such as list
comprehensions, runs faster
than for-loops

◦ Built-in functions are the fastest
due to them being globally
accessible and leveraging a C
backend (for CPython)

TIME PROFILING IN
PYTHON

47

◦ There are several built-in
modules and functions in
Python for the purpose

◦ Simplest is to record the start
and end time of executing a
code section

48

TIME PROFILING IN PYTHON

from timeit import timeit

timeit(‘’’
sum(int_list)
‘’’, setup=’’’
import numpy as np; int_list = np.random.randint(1, 100,
(1000,));
‘’’)

timeit module

● Simplest timer for very small code snippets
● Runs the snippet 1 million times by default
● All code should be fed as strings

49

TIME PROFILING IN PYTHON

import time
import numpy as np

start_t = time.time()

int_list = np.random.randint(1, 100, (1000,))
add_all(int_list)

end_t = time.time()
print(f’Time elapsed: {end_t - start_t}s’)

time module

● Import the time library and get the time at appropriate instances of the
program

● Simple and fast to use

50

TIME PROFILING IN PYTHON

import cProfile
import numpy as np

int_list = np.random.randint(1, 100, (1000,))
cProfile.run(‘’’
for i in range(1000000):
 add_all(int_list)
‘’’)

cProfile module

● Deterministic profiler with advanced break-down of time elapsed for each
component

● Has an accuracy only up to 0.001s

51

TIME PROFILING IN PYTHON

 2000003 function calls in 1.335 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 1000000 0.938 0.000 1.026 0.000 <ipython-input-38-94ea3e02d399>:1(add_all)
 1 0.309 0.309 1.335 1.335 <string>:2(<module>)
 1 0.000 0.000 1.335 1.335 {built-in method builtins.exec}
 1000000 0.089 0.000 0.089 0.000 {built-in method builtins.len}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

cProfile output

● Broken down by (sub)functions called
● Contains runtime in seconds and number of calls to that function during

the whole profiling

TIPS

52

◦ Make the common case fast
◦ Program in assembly as a

last resort
◦ Premature optimization is

bad, but obvious
optimization should be done

◦ Optimization takes twice the
time as normal
programming

TIPS

53

◦ Profile different
implementations to
determine the fastest one

◦ Find the best profiler, or
profiling strategy, according
to your needs

RESOURCES

54

◦ Raytracer C/C++ optimization
tips from Clemson University

◦ C/C++ to Assembly
optimization resources from
Agner Fog

◦ Compiler Explorer to check
compilation results in C, C++,
Python, and many more

https://people.cs.clemson.edu/~dhouse/courses/405/papers/optimize.pdf
https://www.agner.org/optimize/
http://compiler-explorer.com

RESOURCES

55

◦ Gprof resource from the
University of Utah

◦ Short blog on perftools
usage

https://web.archive.org/web/20141129061523/http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html#SEC2
https://dev.to/etcwilde/perf---perfect-profiling-of-cc-on-linux-of
https://dev.to/etcwilde/perf---perfect-profiling-of-cc-on-linux-of

CoE 163
Computing Architectures and Algorithms

02c: High-Level Optimization

