CoE 163

Computing Architectures and Algorithms

02c: High-Level Optimization

MAXIMIZING
ALGORITHMS

“The real problem is that
programmers have spent far too
much time worrying about efficiency
in the wrong places and at the wrong
times, premature optimization is the
root of all evil (or at least most of it) in
programming.”

- Donald Knuth, “The Art of
Computer Programming”

MAXIMIZING
ALGORITHMS

It is much more important to
create correct code than efficient
code. Write correctly now, speed
it up later.

Optimizations, however, are
useful especially if a lot of the
running time is spent on some
piece of code.

AMDAHL'S LAW

o Expression for the maximum
expected improvement of
the whole system if a part of
it is optimized

o Usually used in parallel
programming, but we can
still use it for our

“non-parallel” programs

o/

....

a ¥y

N

AMDAHL'S LAW

1
(1_fE)+%

If f_E (percent) of the code has
been sped-up by f_| (times), then
the whole program will have a
maximum speedup of S (times).

S:

AMDAHL'S LAW

Suppose that we have a
raytracer program with the
intersection algorithm (around
40% of the whole program)
sped-up by 5 times.

AMDAHL'S LAW

S = - 7
(1= fB)+F
1
T (1-04)+9%2
~ 1.47

Was it worth it? Yes, if that code
is commonly used.

GAINING SPEED-UPS

Knowing some basic code
optimizations will come a long
way in squeezing out less time
from your code.

Code for correctness, but make
obvious optimizations when
opportunity comes.

C/C++ SPEED HACKS

o Use bit shift when
multiplying or dividing by
two

o Simplify math expressions to
reduce the number of
operations

o Take advantage of

short-circuit logic because

conditionals are expensive

b/

....

a ¥y

N

C/C++ SPEED HACKS

o Prefer pre-increment over
post-increment

o Prefer iteration over
recursion since function calls
use the stack pointer

o Prefer pass-by-reference
over pass-by-value

... alot more!

PYTHON SPEED
HACKS

o Some code parts may
benefit from being coded
into C and linked into Python

o (Convert loops to list
comprehensions or
generators

o Take advantage of
short-circuit logic

o ... and many more!

HOW WERE THEY
DISCOVERED?

o Knowledge of assembly and
the compiler

o Knowledge of computer

architecture and .

microarchitectures
> Time and space profiling [

'.
&y

GCC

o The GNU Compiler
Collection (GCC) is an
optimizing compiler

o GCC has initially supported
only C in 1987, but can now
compile Go and D, among
others

o [tis an essential part of the

GNU toolchain

GCC COMPILATION PIPELINE

Preprocessor \
\ Compiler —
Assembler J

Opcode <«~—— Linker ~— .0

GCC COMPILER

GCC compiles code in three-stages

o Front - syntax checking and
parsing to an intermediate
representation

o Middle - platform-independent
optimization

o Back - platform-dependent

optimization and conversion to

assembly

GCC COMPILER

Syntax/Semantic Checker

|

Platform-independent
Optimizer

Platform-dependent
Optimizer

GCC: ASSEMBLY

With the structure of GCC, it is
possible to generate the
intermediate preprocessor and
assembly codes.

We can investigate how our code
works at the low-level by reading
the resulting assembly code.

¢ GCC: ASSEMBLY

\ 4

e,

gcc —-S arrays.c

rbp

rbp, rsp

DWORD PTR [rbp-12], 1
DWORD PTR [rbp-8]1, 6
DWORD PTR [rbp-41, 3
edx, DWORD PTR [rbp-12]

eax, DWORD PTR [rbp-8]
edx, eax

eax, DWORD PTR [rbp-4]
eax, edx

rbp

int main () {
int x[] = {1, 6, 3};
return x[0] + x[1] + x[2];
}

Intel ASM

CONSIDER...

Let’s verify whether bit shifting is
faster than division with a power
of 2.

¢ INTEGER DIVISION

int x
int y

\ 4

e,

16;
x / 4;

gcc =S div2.c

Intel ASM

mov DWORD PTR [rbp-4], 16
mov eax, DWORD PTR [rbp-4]

lea edx, [rax+3]

test eax, eax .Extrates’.cf.o!‘
integer division

Cmovs eax, edx

sar eax, 2
mov DWORD PTR [rbp-8], eax

¢ BIT SHIFTING BY TWO

int x
int y

\ 4

e,

16;
X >> 2;

gcc =S div2.c

Intel ASM

DWORD PTR [rbp-4], 16

eax, DWORD PTR [rbp-4] No extra testl
eax, 2 ;

DWORD PTR [rbp-8], eax

DIVISION BY POWER
OF TWO

o When using integer division, the
code still has to check whether
the number is O

o Load instructions are slow, but
bitwise operations are fast

o Bit shifting is marginally faster

than division by a power of two

ASSEMBLY IN C/C++

o GCC supports writing and
compiling of assembly code
within C/C++

o This is useful for systems

development where some

sections would run faster in
assembly

INLINE ASSEMBLY IN C/C++

asm(s : outs : ins : clobbers) ;

N L H

Output
Assembly arguments Registers to be
;n:tl’alig::dnz I overwritten by
ne5vlines y instructions

Input arguments

I

ASSEMBLY IN C/C++

asm (

"mov %1, %%eax\n"

"mov %2, %%ebx\n"

"add %%eax, %%ebx\n" Add aand b
"mov %%ebx, %0\n"

o AT&T ASM
: "=r" (c)

T (a) npn (b)

ASSEMBLY IN C/C++

Although the feature is powerful,
it is relatively easier to write a
whole function in assembly.

It is also possible to write the
assembly code separately as an
. s file.

ASSEMBLY IN C/C++

long add me(long in, long in2); /* Prototype */

asm(/* Assembly function body */

"add me:\n"
o Add in and in2
mov %rdi, %rax\n"
add %]fSi, Srax\n" AT&T ASM
ret\n"

int main (void) {

return add me (3, 5);

TIME PROFILING IN
C/C++

o Several binaries and software
can be used to profile C/C++
Code

o Simplest is to use the built-in

profiler that came with GCC

TIME PROFILING IN
C/C++

gprof

o Qld profiler that uses
statistical sampling to
measure runtime

o (Generates a decent report on
the runtime per function of a
program

o May be inaccurate since

sampling time is usually 0.01s

TIME PROFILING IN C/C++

gprof

e Compile code as normal with flags -pg
e Run programas normal and it will generate profile data named
gmon . out in the directory where you are running the program
e Run gprof with the executable and profile data as arguments
e gprof generates a report on standard output - use redirection to
output into a file
$ gcc add me.c -o add me -pg

$./add me
$ gprof add me gmon.out

TIME PROFILING IN C/C++

gprof - flat profile*

e Shows time spent running each function of a program
e Broken down into cumulative, number of calls, and percentage of
program runtime executing such function

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 1.43 1.43 write

[...]

* not the profile of the add_me function

TIME PROFILING IN C/C++

gprof - call graph*

e Shows time spent running a function and functions that it called during
execution

e Useful for knowing a bit more information on where a program spends
most of its runtime

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05

seconds
index % time self children called name
<spontaneous>
[1] 100.0 0.00 0.05 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on _exit [28]
0.00 0.00 1/1 exit [59]
0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]

* not the profile of the add_me function

TIME PROFILING IN
C/C++

perf

o Newer general-purpose
profiler for the Linux kernel

o Has a command line interface
for viewing reports and even

assembly code

TIME PROFILING IN C/C++

e Compile code as normal

e Run program through perf, and it will generate profile data
named perf.data in the directory where you are running the
program

e Runperf report toview the report

$ gcc add me.c -o add me
$ perf record -g ./add me
S perf report

TIME PROFILING IN C/C++

perf - call graph

e Shows percentage time spent running a function and functions that it
called during execution
e Shows the different libraries and functions called during execution

Samples: 17 of event 'cpu-clock', Event count (approx.): 4250000
dren Self Command Shared Object Symbol

76.47% 76.47% add_all add_all] m

Ox41fdB894155411689

__libc_start_main

LE
.80% add_all [unknown] -] @x41fdB894155411689
.00% add_all 1libc-2.28.so .] __libc_start_main

add_all [kernel.kallsyms] Oxfrffffffbdesdffl
.00% add_all [kernel.kallsyms] exffffffffbd8ellse
.00% add_all [kernel.kallsyms] Oxffffffffbde66c79
.00% add_all [kernel.kallsyms] exffffffffbd8eeess
.00% add_all [kernel.kallsyms] Oxffffffffbdees4183
.00% add_all [kernel.kallsyms] Oxffffffffbd206cl6
add_all [kernel.kallsyms] Oxffffffffbd720455

.00% add_all [unknown] ©x0000000000000040
.00% add_all [unknown] @x3d4c4c4a54853006¢C
.00% add_all 1d-2.28.so .] 0x00007f0a37705a8d
.00% add_all 1d-2.28.so .] 0x0000710a37715650
.00% add_all [unknown] 0000000000000000
.00% add_all 1d-2.28.so .] 8x00007f0a377010dc
.00% add_all .] 0x00007f0a37703531
00% add_all 0x00007fRa37556e56

-his y

+
+
+
+
+
+
+
+
+
+
+
+
+
+
.
+
+
i

TIME PROFILING IN C/C++

perf - disassembler

e Shows percentage time spent running each assembly instruction during
execution

e Useful for knowing a bit more information on where a program spends
most of its runtime

Samples: 17 of event 'cpu-clock', 4008 Hz, Event count (approx.): 4250000
main /home/squeekeek/add_all [Percent: local period]
Percent 0000000000001125 <main>:
main():

push %rbp

mov %rsp,%rbp

movl $0x@,-0x8(%rbp)

movl $08x@,-0x4(%rbp)

jmp le

add %eax,—8x8(%rbp)
$0xf423F,—0x4(%rbp)

$0x0,%eax
%rbp

ey bindings

CPYTHON

o CPython is the reference
implementation of Python
since 1994

o |t is an interpreter with an
internal helper compiler

o |t can either execute programs
on-the-fly, or compile it into a

platform-independent

bytecode

CPYTHON INTERPRETATION
PIPELINE

197 Compiler

run Virtual Machine ~— .pyc

Library

CPYTHON:
“ASSEMBLY”

Since Python is interpreted, it
generates a
platform-independent bytecode
instead of assembly code.

We can investigate how our code
works at the intermediate level by
reading the resulting bytecode.

¢ CPYTHON: BYTECODE

def main() :
x = [1, 6, 3]
return x[0] + x[1] + x[2]

4

e,

dis.dis (main)

LOAD CONST
LOAD CONST
LOAD CONST
BUILD LIST
STORE_FAST
LOAD FAST

LOAD CONST
BINARY SUBSCR

..
RETURN VALUE

CPYTHON: BYTECODE

2| 0 LOAD_CONST 1 (1)

2 LOAD CONST 2 (6)

| | T \

Line number in Obar
source code parg
Instruction index — Opcode result —

Opcode ——

CONSIDER...

Let’s check the fastest way to
add all the numbers in a list.

NORMAL LOOP

sum all = 0

for 1 in range(len(num list)):

sum_all += num list([i]
return sum all

dis.dis(add all)

LOAD CONST
STORE_FAST
SETUP_LOOP
[ooo]

STORE_FAST

LOAD FAST
[ooo]
STORE_FAST
LOAD FAST
[ooo]

RETURN VALUE

Too many
operations!

FUNCTOOLS REDUCE

return reduce (lambda a, b: a + b, num list)

dis.dis (add all)]

LOAD GLOBAL 0 (reduce)
LOAD CONST 1 (...)
LOAD CONST 2 (...)
MAKE FUNCTION 0

0

2

LOAD FAST (num list)

CALL FUNCTION

RETURN VALUE
Much better!

BUILT-IN SUM

return sum(num list)

dis.dis (add all)]

LOAD GLOBAL 0 (sum)
LOAD FAST 0 (num list)
CALL FUNCTION 1

RETURN VALUE

This is the
best.

SUMMING A LIST

o Constructing a for-loop requires
set-up on the interpreter, and is
relatively slow

o “ldiomatic” code, such as list
comprehensions, runs faster
than for-loops

o Built-in functions are the fastest
due to them being globally
accessible and leveraging a C

backend (for CPython)

TIME PROFILING IN
PYTHON

o There are several built-in
modules and functions in
Python for the purpose

o Simplest is to record the start

and end time of executing a

code section

TIME PROFILING IN PYTHON

timeit module

e Simplest timer for very small code snippets
e Runs the snippet 1 million times by default
e All code should be fed as strings

from timeit import timeit

timeit (‘"'

sum(int list)

\//, Setupzlll

import numpy as np; int list = np.random.randint (1, 100,
(1000,)) s

\II)

TIME PROFILING IN PYTHON

time module

e Import the time library and get the time at appropriate instances of the
program
e Simple and fast to use

import time
import numpy as np

start t = time.time ()

int list = np.random.randint (1, 100, (1000,))
add all(int 1list)

end t = time.time ()
print (f’'Time elapsed: {end t - start t}s’)

TIME PROFILING IN PYTHON

cProfile module

e Deterministic profiler with advanced break-down of time elapsed for each
component
e Has an accuracy only up to 0.001s

import cProfile
import numpy as np

int list = np.random.randint (1, 100, (1000,))
cProfile.run ('’
for 1 in range (1000000) :
add all(int 1list)
")

TIME PROFILING IN PYTHON

cProfile output

e Broken down by (sub)functions called
e (Contains runtime in seconds and number of calls to that function during
the whole profiling

2000003 function calls in 1.335 seconds
Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno (function)
1000000 0.938 0.000 1.026 0.000 <ipython-input-38-94ea3e02d399>:1 (add_all)

1 0.309 0.309 1.335 1.335 <string>:2 (<module>)
1 0.000 0.000 1.335 1.335 {built-in method builtins.exec}
1000000 0.089 0.000 0.089 0.000 {built-in method builtins.len}
1 0.000 0.000 0.000 0.000 {method 'disable' of ' lsprof.Profiler' objects}

TIPS

o Make the common case fast

o Program in assembly as a
last resort

o Premature optimization is
bad, but obvious
optimization should be done

o Optimization takes twice the
time as normal

programming

b/

....

a ¥y

N

TIPS

o Profile different

y Q [/
implementations to

determine the fastest one 8 .

> Find the best profiler, or . .
profiling strategy, according

to your needs a %y

N

RESOURCES

o Raytracer C/C++ optimization
tips from Clemson University

o C/C++ to Assembly
optimization resources from
Agner Fog

o Compiler Explorer to check
compilation results in C, C++,

Python, and many more

https://people.cs.clemson.edu/~dhouse/courses/405/papers/optimize.pdf
https://www.agner.org/optimize/
http://compiler-explorer.com

RESOURCES

o Gprof resource from the

University of Utah

o Short blog on perftools .
usage .

'.
&y

. J

https://web.archive.org/web/20141129061523/http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html#SEC2
https://dev.to/etcwilde/perf---perfect-profiling-of-cc-on-linux-of
https://dev.to/etcwilde/perf---perfect-profiling-of-cc-on-linux-of

CoE 163

Computing Architectures and Algorithms

02c: High-Level Optimization

