
CoE 163
Computing Architectures and Algorithms

03c: x86 Assembly Reference

2

SYNTAX

Unlike MIPS, the destination is implied to
contain one of the operands to instructions
that require at least two operands

x86 has two major syntax flavors: AT&T
and Intel.

◦ AT&T is common in Linux systems.
◦ Intel is common in Windows

systems.

For the rest of the discussion, we will be
using Intel syntax - more specifically the
NASM flavor.

3

REGISTERS

rax rbx rcx rdx rsi rdi rbp rsp r8 r9 r10
r11 r12 r13 r14 r15

eax ebx ecx edx esi edi ebp esp r8d r9d
r10d r11d r12d r13d r14d r15d

ax bx cx dx si di bp sp r8w r9w r10w r11w
r12w r13w r14w r15w

ah bh ch dh

al bl cl dl sil dil bpl spl r8b r9b r10b
r11b r12b r13b r14b r15b

8 bytes

4 bytes

2 bytes

1 byte (upper)

1 byte (lower)

4

REGISTER NAMES

Register (Historical) Name

ax accumulator

bx base

cx counter

dx data (ax extension)

si source index (strings)

di destination index (strings)

sp stack pointer

bp base pointer

5

STATIC DATA

Memory data can be initialized in the .data section of the code.
Each variable should be on a separate line and denoted as follows:

<name> <size> <data>

section .data

var DB 64 ; byte
abc DQ ? ; uninit qword
x DD 27 ; dword
z DD 1, 2, 3 ; “array” of 3 dwords

Example

6

STATIC DATA

Arrays and strings can also be initialized in the .data section.

section .data

bytes TIMES 7 DB ? ; 7 uninit bytes
abx TIMES 25 DQ 0 ; 25 qwords inited to 0
mystr DB ‘hello’, 0 ; null-terminated string

Example

7

MEMORY ADDRESSING

Memory addresses are denoted by square brackets [].

Up to two registers and one signed constant can be added together
to form a memory address. One of the registers can be pre-multiplied
by 2, 4, or 8.

mov [rax], rbx
mov rax, [rsi - 8] ; added by signed -8
mov [rax + rbx], 12
mov [2 * rbx + rax], FFh

Example

8

MEMORY ADDRESSING

The example below shows some of the incorrect ways to compute
memory addresses.

mov [rax + rbx + rcx], -FEh
mov rsi, [rbx - rcx]

Example

9

SIZE DIRECTIVES

QWORD

DWORD

WORD

BYTE

1 byte

Size directives are used to label how many bytes of the content
should be used for an operation. This is required to infer how many
bytes to get from a memory cell.

BASIC
INSTRUCTIONS

11

x86_64 INSTRUCTIONS

Move contents of B into A.

Note that you cannot move contents directly from one memory cell to
another using this instruction. A mov to a register should be done
first.

mov <R/M/I>, <R/M/I>

mov QWORD rax, 5
mov QWORD [rax + Fh], 5
mov DWORD rbx, rax
mov DWORD rbx, [rax + 5]

Example

12

x86_64 INSTRUCTIONS

Push operand into the stack.

The register rsp is decremented by 8 first, and then the 8-byte
content of the operand is moved into the address pointed to by rsp.

push <R/M/C>

push rax
push [rax + 5]
push 0

Example

13

x86_64 INSTRUCTIONS

Pop something from the stack.

The 8-byte content at the address pointed to by rsp is saved into
the operand first, and then the rsp is decremented by 8.

pop <R/M>

pop rax
pop [rax + 5]

Example

14

x86_64 INSTRUCTIONS

Get memory address of a cell.

This operand loads the effective address of the second operand, not
its contents. R will contain a “pointer” to the memory cell M.

lea <R>, <M>

lea QWORD rax, [rdx + 4 * rbx]
lea QWORD rsi, [rax]

Example

15

x86_64 INSTRUCTIONS

Add or subtract operands

These instructions add or subtract the two operands and store the
result into first operand. Like mov, only one of the operands may be a
memory location.

add <R/M/C>, <R/M/C>
sub <R/M/C>, <R/M/C>

add rax, rbx
add WORD [rax + 3], Fh
sub WORD Fh, [rbx]

Example

16

x86_64 INSTRUCTIONS

Increment or decrement an operand by 1.

inc <R/M>
dec <R/M>

inc rdx
inc DWORD [rax]
dec DWORD [rdx + FFh]

Example

17

x86_64 INSTRUCTIONS

Multiply two numbers and store the result in the first (register)
operand.

The two-operand version multiplies the two operands while in the
three-operand version, the second and third operands are multiplied.

imul <R>, <R/M>
imul <R>, <R/M>, <C>

imul rbx, rax
imul QWORD rax, [rbx + 9]
imul rax, rbx, FFh
imul QWORD rax, [4 * rsi], EFh

Example

18

Divide two numbers with the operand as divisor.

The divided should be stored in rdx (MSB) and rax (LSB). The
quotient is stored in rax while the remainder is in rdx.

x86_64 INSTRUCTIONS

idiv <R/M>

mov rdx, 0
mov rax, deadbeefh
idiv 0ff1ceh

Example

19

x86_64 INSTRUCTIONS

Perform various bitwise operations.

These instructions operate on the two operands and store the result
into first operand. Like mov, only one of the operands may be a
memory location.

and <R/M/C>, <R/M/C>
or <R/M/C>, <R/M/C>
xor <R/M/C>, <R/M/C>

and rax, rbx
or QWORD [rax], 1h
xor FEE7h, rdx

Example

20

Invert bits of the operand contents.

x86_64 INSTRUCTIONS

not <R/M>

not FEFh
not QWORD [rax + 16]

Example

21

Negate the operand contents.

The negation works using two’s complement.

x86_64 INSTRUCTIONS

neg <R/M>

neg rdx
neg QWORD [rbx + 9]

Example

22

x86_64 INSTRUCTIONS

Shift bits of first operand by some amount.

These instructions shift the bits by some 8-bit amount modulo 64
specified in the second operand. This operand can either be an 8-bit
constant or the cl register.

shl <R/M>, <R/C>
shr <R/M>, <R/C>

mov cl, 3
shl rax, cl
shr QWORD [rbx], 3

Example

CONTROL FLOW
INSTRUCTIONS

24

CONTROL FLOW

Unlike MIPS, branch instructions are
merged into jump instructions.

Conditional jumping is checked based on
a register named machine status word
(MSW), which is changed based on the
last arithmetic operation among other
things.

25

x86_64 INSTRUCTIONS

Move the program counter some memory location.

jmp <L>

loop: mov rax, Fh
 jmp loop

Example

26

x86_64 INSTRUCTIONS

Move the program counter some memory location depending on the
MSW.

je <L> ; jump if equal
jne <L> ; jump if not equal
jz <L> ; jump if previous is zero

mov rax, 1000
mov rbx, 500
cmp rax, rbx
je loop

Example

27

x86_64 INSTRUCTIONS

Move the program counter some memory location depending on the
MSW.

jg <L> ; jump if greater than
jge <L> ; jump if greater than or equal to
jl <L> ; jump if less than
jle <L> ; jump if less than or equal to

mov rax, 1000
mov rbx, 500
cmp rax, rbx
jle loop

Example

28

x86_64 INSTRUCTIONS

Compare contents of two operands.

The MSW is set depending on the result of this comparison, and is
equivalent to sub with the result discarded. This is usually used
before a J-type instruction.

cmp <R/M>, <R/M/C>

 mov rax, 10
loop: dec 1
 cmp rax, 0
 jg loop

Example

SUBROUTINE
INSTRUCTIONS

30

SUBROUTINES

Subroutine handling is similar to MIPS,
which starts with pushing the current
program counter (PC) to the stack and
then jumping to the start of the subroutine.

When the subroutine ends, it is imperative
to clear the stack so that the top of it
contains the previous PC.

31

x86_64 INSTRUCTIONS

Call subroutine starting at some location

This is similar to jmp except that the current PC is pushed to the
stack and then a jmp is performed to the label.

call <L>

 mov rax, 3
 mov rbx, 5
 call addme

addme: add rax, rbx

Example

32

x86_64 INSTRUCTIONS

Exit from subroutine

This is similar to jmp except that the stack is poped and then a jmp
is performed to the address pointed by it as if it is the PC.

ret

addme: add rax, rbx
 ret

Example

CALLING
CONVENTION:

SYSTEM V (LINUX)

34

x86_64 CALLING
CONVENTION
◦ For easier tracking of the

conventions, you can write a
prologue and an epilogue around the
call instruction, and at the start
and end of the subroutine.

◦ Note that the stack grows down, so
the SP should decrement when
something is pushed into the stack.

35

x86_64 CALLER
RULES
◦ Push caller-saved register values into

the stack - r8, r9, and any registers
used as parameters to a subroutine.

◦ Place the first six parameters into
these registers in order: rdi, rsi,
rdx, rcx, r8, r9.

◦ The seventh and other parameters
should be pushed into the stack
starting from the last one.

◦ Once everything has been prepared,
use call to go to the subroutine.

36

x86_64 CALLER
RULES
◦ Once the subroutine returns, the

return value should be in rax
◦ Next, pop any parameters from the

stack.
◦ Finally, restore caller-saved registers

values by popping from the stack.

37

x86_64 SUBROUTINE
RULES
◦ Allocate space for local variables by

decrementing the stack pointer (SP)
by the size needed.

◦ Push callee-saved register values
into the stack - rbx, rbp, r12-r15.

◦ Once everything has been prepared,
the subroutine can now proceed.

◦ Once the subroutine is finished, the
return value should be saved in rax.

38

x86_64 SUBROUTINE
RULES
◦ Next, restore callee-saved registers

values by popping from the stack.
◦ Deallocate space for local variables

by incrementing the stack pointer to
its original value before the
subroutine started.

◦ Finally, use ret to exit the
subroutine.

39

x86_64 SAVED REGISTERS

rax rcx rdx rsi rdi r8
r9 r10 r11

rbx rsp rbp r12 r13
r14 r15

Caller-saved (call-clobbered)

Scratch registers that the one
calling the subroutine should
“save” to the stack if the relevant
register contents are useful.

Callee-saved (call-preserved)

Preserved registers that the
subroutine should either not
change or “save” its original
contents if they will be used.

The stack pointer rsp is saved
when a call is used.

40

x86_64 CALLING CONVENTION

section .text

global main
global add_ints

main:
 ; prologue
 mov rdi, 2
 mov rsi, 3

 call add_ints

In the example below, only the parameter registers (rdi, rsi) were
edited, so there’s no need to write a prologue.

Note that the return value should be in rax!

41

x86_64 CALLING CONVENTION

add_ints:
 mov rax, rdi
 add rax, rsi

 ret

In the example below, only the parameter registers (rdi, rsi) were
edited, so there’s no need to write a prologue.

Note that the return value should be in rax!

CALLING
CONVENTION:
MICROSOFT
(WINDOWS)

43

x86_64 CALLER
RULES
◦ Push caller-saved register values into

the stack - rbx, rbp, and any
registers used as parameters to a
subroutine.

◦ The stack pointer should be 16-byte
aligned, so a necessary increment to
the stack pointer may be required.

◦ Allocate 32 bytes of free space on
the stack for the first four
parameters of the subroutine.

◦ Place the first four parameters into
these registers in order: rcx, rdx,
r8, r9.

44

◦ The fifth and other parameters
should be pushed into the stack
starting from the last one.

◦ Once everything has been prepared,
use call to go to the subroutine.

◦ Once the subroutine returns, the
return value should be in rax

◦ Next, pop any parameters from the
stack, including the 32 bytes of free
space.

◦ Finally, restore caller-saved registers
values by popping from the stack.

x86_64 CALLER
RULES

45

x86_64 SUBROUTINE
RULES
◦ Allocate space for local variables by

decrementing the stack pointer (SP)
by the size needed.

◦ Push callee-saved register values
into the stack - rbx, rbp, r12-r15.

◦ Once everything has been prepared,
the subroutine can now proceed.

◦ Once the subroutine is finished, the
return value should be saved in rax.

46

x86_64 SUBROUTINE
RULES
◦ Next, restore callee-saved registers

values by popping from the stack.
◦ Deallocate space for local variables

by incrementing the stack pointer to
its original value before the
subroutine started.

◦ Finally, use ret to exit the
subroutine.

47

x86_64 SAVED REGISTERS

rax rcx rdx r8 r9 r10
r11

rbx rbp rdi rsi rsp
r12 r13 r14 r15

Caller-saved (call-clobbered)

Scratch registers that the one
calling the subroutine should
“save” to the stack if the relevant
register contents are useful.

Callee-saved (call-preserved)

Preserved registers that the
subroutine should either not
change or “save” its original
contents if they will be used.

The stack pointer rsp is saved
when a call is used.

48

x86_64 CALLING CONVENTION

The prologue aligns the stack pointer and allocates for the first four
parameters in a single instruction.

section .text

global main
global add_ints

main:
 ; prologue
 sub rsp, 8 * 5
 mov rcx, 2
 mov rdx, 3

 call add_ints

 ; epilogue
 add rsp, 8 * 5

Example

49

x86_64 CALLING CONVENTION

In the example below, only the parameter registers (rcx, rdx) were
edited, so there’s no need to write a prologue.

Note that the return value should be in rax!

add_ints:
 mov rax, rcx
 add rax, rdx

 ret

Example

50

RESOURCES

◦ x86 introduction from the
University of Washington (US)

◦ x86 reference from the
University of Virginia (US)

◦ Microsoft x64 calling convention
◦ NASM documentation

https://courses.cs.washington.edu/courses/cse351/18wi/lectures/07/CSE351-L07-x86-Intro_18wi.pdf
https://aaronbloomfield.github.io/pdr/book/x86-64bit-asm-chapter.pdf
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170&viewFallbackFrom=vs-2019
https://www.nasm.us/xdoc/2.15.05/html/nasmdoc0.html

CoE 163
Computing Architectures and Algorithms

03c: x86 Assembly Reference

