CoE 163

Computing Architectures and Algorithms

Matrix-Matrix Multiplication (part 1)

Why Matrix-Matrix Multiplication (MMM)?

0

Ο

At the heart of many linear algebra algorithms Optimizing MMM is valuable to optimizing many applications, especially in the applied sciences Warm up: Write some MMM code (practice on your own) Three people denoted by P_1 , P_2 , P_3 intend to buy some rolls, buns, cakes, and bread. Each of them needs these commodities in differing quantities and can buy them in two shops S_1 , S_2 .

TRY IT YOURSELF (warm up): Using Python, write a program that determines which shop is the best for every person P_1 , P_2 , P_3 to pay as little as possible. The individual prices and desired quantities of the commodities are given in the following tables:

Demand quantity of foodstuff:				
	roll	bun	cake	brea d
P 1	6	5	3	1
P2	3	6	2	2
P 3	3	4	3	1

Prices in shops S1 and S2			
	S1	S2	
roll	1.50	1.00	
bun	2.00	2.50	
cake	5.00	4.50	
bread	16.00	17.00	

How do we optimize our MMM algorithm?

Improving locality is the key

0

- Goal: write our program such that temporal and spatial locality is maximized
 - Cache misses are minimized
 - Contents of the cache are used up immediately
- Matrix multiplication has inherent locality
 - Spatial locality: matrices are stored as 2d arrays (see next: row major vs column major)
 - Temporal locality: Implemented as nested loops
- Try to optimize cache behavior in our MMM algorithm's innermost loop

Preliminaries: How are matrices stored in memory?

- Column-major vs Row-Major
 - Example shows how a matrix of floats (assume 8 bytes) is stored row-major (such as in C language) or column-major (such as in Fortran)

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Sample code:

float $A[3][3] = \{\{1,2,3\},\{4,5,6\},\{7,8,9\}\};$

Memory Address	Data (assume 8 bytes word length)
0x0000000	
0x0000008	
0x00000010	
0x00000018	
0x00000020	
0x00000028	
0x0000030	
0x0000038	
0x00000040	

Preliminaries: How are matrices stored in memory?

- Column-major vs Row-Major
 - Example shows how a matrix of floats (assume 8 bytes) is stored row-major (such as in C language) or column-major (such as in Fortran)

Sample code: float A[3][3] = {{1,2,3}, {4,5,6}, {7,8,9}};

ROW MAJOR

Memory Address	Data (assume 8 bytes word length)
0x00000000	A[0][0] = $a_{11} = 1$
0x0000008	A[0][1] = $a_{12} = 2$
0x00000010	A[0][2] = $a_{13} = 3$
0x00000018	A[1][0] = $a_{21} = 4$
0x00000020	A[1][1] = $a_{22} = 5$
0x0000028	A[1][2] = $a_{23} = 6$
0x0000030	A[2][0] = $a_{31} = 7$
0x0000038	A[2][1] = $a_{32} = 8$
0x00000040	$A[2][2] = a_{33} = 9$

Preliminaries: How are matrices stored in memory?

- Column-major vs Row-Major
 - Example shows how a matrix of floats (assume 8 bytes) is stored row-major (such as in C language) or column-major (such as in Fortran)

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 4 & 5 & 6 \\ 4 & 5 & 6 \end{bmatrix}$$

Sample code: float A[3][3] = {{1,2,3}, {4,5,6}, {7,8,9}};

COLUMN MAJOR

Memory Address	Data (assume 8 bytes word length)
0x0000000	A[0][0] = $a_{11} = 1$
0x0000008	A[1][0] = $a_{21} = 2$
0x00000010	A[2][0] = $a_{31} = 3$
0x00000018	A[0][1] = $a_{12} = 4$
0x00000020	A[1][1] = $a_{22} = 5$
0x0000028	A[2][1] = $a_{32} = 6$
0x0000030	A[0][2] = $a_{13} = 7$
0x0000038	A[1][2] = $a_{23} = 8$
0x00000040	A[2][2] = $a_{33} = 9$

Why does this matter?

Ο

Ο

Memory Address	Data (assume 8 bytes word length)
0x00000000	A[0][0] = $a_{11} = 1$
0x0000008	A[0][1] = $a_{12} = 2$
0x00000010	A[0][2] = $a_{13} = 3$
0x00000018	A[1][0] = $a_{21} = 4$
0x00000020	A[1][1] = $a_{22} = 5$
0x00000028	A[1][2] = $a_{23} = 6$
0x00000030	$A[2][0] = a_{31} = 7$
0x00000038	$A[2][1] = a_{32} = 8$
0x00000040	A[2][2] = $a_{33} = 9$

- Table shows 2d array stored in main memory **row-wise**
- Algorithm we use must take this into account to maximize spatial locality
 - Outer loop should iterate rowwise, and then iterate across elements
 - If we iterate column-wise first, we are not accessing contiguous data in memory

Let's look at a column-major example

Ο

Memory Address	Data (assume 8 bytes word length)
0x00000000	$A[0][0] = a_{11}$
0x0000008	$A[1][0] = a_{21}$
0x00000010	$A[2][0] = a_{31}$
0x00000018	$A[3][0] = a_{41}$
0x00000020	
0x00000028	A[6][9] = a_{710}
0x00000030	A[7][9] = a_{810}
0x00000038	$A[8][9] = a_{910}$
0x00000040	A [9] [9] $= a_{10 \ 10}$

Table shows 2d array stored in main memory **column-wise**

- Assume A is 10×10 matrix
- If we iterate row-wise first, we are not accessing contiguous data in memory

(demonstrated in next few slides)

Keep in mind: Transfers to cache are in blocks

- If we traverse one row of matrix A, we transfer other adjacent data words into cache that we are not using
 - Highlighted words in diagram show row 1 of A in cache

```
Sample traversal pseudocode:
for i=1 to n
    for j=1 to n
        {perform operation with A<sub>ij</sub>}
    end for
end for
```

Line number	4 words per cache line			
x	<i>a</i> ₁₁	<i>a</i> ₂₁	<i>a</i> ₃₁	<i>a</i> ₄₁
x+1	<i>a</i> ₉₁	<i>a</i> ₁₀₁	<i>a</i> ₁₂	a ₂₂
x+2	<i>a</i> ₁₃	<i>a</i> ₂₃	<i>a</i> ₃₃	a _{4 3}
x+3	a ₉₃	a ₁₀₃	<i>a</i> ₁₄	a ₂₄
x+4	<i>a</i> ₁₅	<i>a</i> ₂₅	<i>a</i> ₃₅	<i>a</i> ₄₅
x+5	a ₉₅	<i>a</i> _{10 5}	<i>a</i> ₁₆	a ₂₆
x+6	<i>a</i> ₁₇	a ₂₇	<i>a</i> ₃₇	a ₄₇
x+7	a ₉₇	a _{10 7}	<i>a</i> ₁₈	<i>a</i> ₂₈
x+8	<i>a</i> ₁₉	a ₂₉	<i>a</i> ₃₉	<i>a</i> ₄₉
x+9	a ₉₉	a _{10 9}	<i>a</i> _{1 10}	<i>a</i> _{2 10}
x+10				
x+12				
x+13				
x+14				
x+15				

Sample Processor Cache 64 words, 4 words per line

Keep in mind: Transfers to cache are in blocks

- Algorithm is inefficient: many words transferred to cache that are not useful for the operation
- Lines in cache occupied by unused words: this increases cache misses

```
Sample traversal pseudocode:
for i=1 to n
    for j=1 to n
        {perform operation with A<sub>ij</sub>}
    end for
end for
```

Remaining space in cache for additional data needed by the operation

Line number	4 words per cache line			
х	<i>a</i> ₁₁	<i>a</i> ₂₁	<i>a</i> ₃₁	<i>a</i> ₄₁
x+1	<i>a</i> ₉₁	<i>a</i> _{10 1}	<i>a</i> ₁₂	a ₂₂
x+2	<i>a</i> ₁₃	<i>a</i> ₂₃	<i>a</i> ₃₃	a _{4 3}
x+3	a ₉₃	a ₁₀₃	<i>a</i> ₁₄	a ₂₄
x+4	<i>a</i> ₁₅	<i>a</i> ₂₅	<i>a</i> ₃₅	<i>a</i> ₄₅
x+5	a ₉₅	<i>a</i> _{10 5}	<i>a</i> ₁₆	a ₂₆
x+6	<i>a</i> ₁₇	<i>a</i> ₂₇	<i>a</i> ₃₇	a ₄₇
x+7	a ₉₇	a _{10 7}	<i>a</i> ₁₈	<i>a</i> ₂₈
x+8	a ₁₉	a ₂₉	<i>a</i> ₃₉	a ₄₉
x+9	a ₉₉	a _{10 9}	<i>a</i> _{1 10}	a _{2 10}
x+10				
x+12				
x+13				
x+14				
x+15				

Sample Processor Cache 64 words, 4 words per line

Let's look at a basic MMM algorithm (assume row-major memory)

MMM Algorithm 1 (ijk), row-major memory

Consider the following pseudocode for MMM (let's call it "ijk"):

```
for i = 1 to n
for j = 1 to n
for k = 1 to n
C_{ij} = C_{ij} + A_{ik} + B_{kj}
end for
end for
end for
```

- Multiply $n \times n$ matrices
 - For illustration, let's use small matrix n = 4
 - We are usually more concerned with large matrices
- Performance of algorithm: $O(n^3)$ total operations -> grows cubically with larger matrices

MMM Algorithm 1 (ijk), row-major memory

• Consider the following pseudocode for MMM (let's call it "ijk"):

```
for i = 1 to n
for j = 1 to n
for k = 1 to n
C_{ij} = C_{ij} + A_{ik} + B_{kj}
end for
end for
end for
```

- C_{ij} is initialized to zero matrix
- i keeps track of the row
- j keeps track of the column
- k iterates elements across the row of A and the column of B

MMM Algorithm 1 (ijk), row-major memory

• Consider the following pseudocode for MMM (let's call it "ijk"):

- We traverse A row-wise and traverse B columnwise
 - Load row i of A (successive in main memory) into cache once until the entire computation for row i of C finishes
 - We load a new column j of B (costly: not successive in memory) whenever innermost loop completes an iteration k=1 to n

MMM Algorithm 1 (ijk): Cache behavior

Suppose we are solving for C₂₁

Ο

- Elements of row i = 2 of A are successively stored in main memory
- Elements of column j = 1 of B are not stored successively
- Algorithm has spatial and temporal locality wrt accessing elements of A
- No spatial locality accessing elements of B (cache misses, especially for very large matrices)

What if we swap the i and j loops ("jik")?

- No spatial locality accessing elements of A (cache misses, especially for large matrices)
- Enjoy spatial locality accessing elements of B
- Roughly same performance

What about "kji"?

for k = 1 to n for j = 1 to n for i = 1 to n $C_{ij} = C_{ij} + A_{ik} + B_{kj}$ end for end for end for

- Innermost loop iterates something like the following:
 - $C_{11} = C_{11} + A_{11} * B_{11}$
 - $C_{21} = C_{21} + A_{21} * B_{11}$
 - $C_{31} = C_{31} + A_{31} * B_{11}$
- B is fixed, but traverse C and A column-wise
- Encounter cache misses for elements of *both* C and A at each iteration of the innermost loop
- Likely to have poorer performance

Try it yourself!

Try to implement ijk, jik, kji, kij, and other variants of nested loops of MMM

Time the execution of each and compare the results