
CoE 163
Computing Architectures and Algorithms

Matrix-Matrix Multiplication (part 1)

Why Matrix-Matrix Multiplication (MMM)?

◦ At the heart of many linear algebra algorithms
◦ Optimizing MMM is valuable to optimizing

many applications, especially in the applied
sciences

Warm up: Write some MMM code
(practice on your own)

Three people denoted by P1, P2, P3 intend to buy some rolls, buns, cakes, and
bread. Each of them needs these commodities in differing quantities and can buy
them in two shops S1, S2.

TRY IT YOURSELF (warm up): Using Python, write a program that determines
which shop is the best for every person P1, P2, P3 to pay as little as possible. The
individual prices and desired quantities of the commodities are given in the
following tables:

Prices in shops S1 and S2

S1 S2

roll 1.50 1.00

bun 2.00 2.50

cake 5.00 4.50

bread 16.00 17.00

Demand quantity of foodstuff:

roll bun cake brea
d

P1 6 5 3 1

P2 3 6 2 2

P3 3 4 3 1

How do we optimize our MMM algorithm?

Improving locality is the key

◦ Goal: write our program such that temporal
and spatial locality is maximized
◦ Cache misses are minimized
◦ Contents of the cache are used up immediately

◦ Matrix multiplication has inherent locality
◦ Spatial locality: matrices are stored as 2d

arrays (see next: row major vs column major)
◦ Temporal locality: Implemented as nested

loops
◦ Try to optimize cache behavior in our MMM

algorithm’s innermost loop

Preliminaries: How are matrices
stored in memory?
◦ Column-major vs Row-Major

◦ Example shows how a matrix of
floats (assume 8 bytes) is stored
row-major (such as in C language)
or column-major (such as in Fortran)

𝐴 =
𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

=
1 2 3
4 5 6
7 8 9

Sample code:
float A[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

Memory
Address Data (assume 8 bytes word length)

0x00000000

0x00000008

0x00000010

0x00000018

0x00000020

0x00000028

0x00000030

0x00000038

0x00000040

Preliminaries: How are matrices
stored in memory?
◦ Column-major vs Row-Major

◦ Example shows how a matrix of
floats (assume 8 bytes) is stored
row-major (such as in C language)
or column-major (such as in Fortran)

𝐴 =
𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

=
1 2 3
4 5 6
7 8 9

Sample code:
float A[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

Memory
Address Data (assume 8 bytes word length)

0x00000000 A[0][0] = 𝑎!! = 1

0x00000008 A[0][1] = 𝑎!" = 2

0x00000010 A[0][2] = 𝑎!# = 3

0x00000018 A[1][0] = 𝑎"! = 4

0x00000020 A[1][1] = 𝑎"" = 5

0x00000028 A[1][2] = 𝑎"# = 6

0x00000030 A[2][0] = 𝑎#! = 7

0x00000038 A[2][1] = 𝑎#" = 8

0x00000040 A[2][2] = 𝑎## = 9

ROW MAJOR

Preliminaries: How are matrices
stored in memory?
◦ Column-major vs Row-Major

◦ Example shows how a matrix of
floats (assume 8 bytes) is stored
row-major (such as in C language)
or column-major (such as in Fortran)

𝐴 =
𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

=
1 2 3
4 5 6
7 8 9

Sample code:
float A[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

Memory
Address Data (assume 8 bytes word length)

0x00000000 A[0][0] = 𝑎!! = 1

0x00000008 A[1][0] = 𝑎"! = 2

0x00000010 A[2][0] = 𝑎#! = 3

0x00000018 A[0][1] = 𝑎!" = 4

0x00000020 A[1][1] = 𝑎"" = 5

0x00000028 A[2][1] = 𝑎#" = 6

0x00000030 A[0][2] = 𝑎!# = 7

0x00000038 A[1][2] = 𝑎"# = 8

0x00000040 A[2][2] = 𝑎## = 9

COLUMN MAJOR

Why does this matter?
◦ Table shows 2d array stored in main

memory row-wise
◦ Algorithm we use must take this into

account to maximize spatial locality
◦ Outer loop should iterate row-

wise, and then iterate across
elements

◦ If we iterate column-wise first,
we are not accessing
contiguous data in memory

Memory
Address Data (assume 8 bytes word length)

0x00000000 A[0][0] = 𝑎!! = 1

0x00000008 A[0][1] = 𝑎!" = 2

0x00000010 A[0][2] = 𝑎!# = 3

0x00000018 A[1][0] = 𝑎"! = 4

0x00000020 A[1][1] = 𝑎"" = 5

0x00000028 A[1][2] = 𝑎"# = 6

0x00000030 A[2][0] = 𝑎#! = 7

0x00000038 A[2][1] = 𝑎#" = 8

0x00000040 A[2][2] = 𝑎## = 9

Let’s look at a column-major example
◦ Table shows 2d array stored in main

memory column-wise
◦ Assume A is 10×10 matrix
◦ If we iterate row-wise first, we are

not accessing contiguous data in
memory

(demonstrated in next few slides)

Memory
Address Data (assume 8 bytes word length)

0x00000000 A[0][0] = 𝑎!!
0x00000008 A[1][0] = 𝑎"!
0x00000010 A[2][0] = 𝑎#!
0x00000018 A[3][0] = 𝑎$!
0x00000020 …

0x00000028 A[6][9] = 𝑎% !&
0x00000030 A[7][9] = 𝑎' !&
0x00000038 A[8][9] = 𝑎(!&
0x00000040 A[9][9] = 𝑎!& !&

Keep in mind: Transfers to cache are in blocks
◦ If we traverse one row of matrix A, we transfer

other adjacent data words into cache that we are
not using

◦ Highlighted words in diagram show row 1 of A in
cache

Sample traversal pseudocode:
for i=1 to n

for j=1 to n
{perform operation with Aij}

end for
end for

Sample Processor Cache
64 words, 4 words per line

Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑎!# 𝑎"# 𝑎## 𝑎$ #
x+3 𝑎%# 𝑎!& # 𝑎!$ 𝑎"$
x+4 𝑎!' 𝑎"' 𝑎#' 𝑎$'
x+5 𝑎%' 𝑎!& ' 𝑎!(𝑎"(
x+6 𝑎!) 𝑎") 𝑎#) 𝑎$)
x+7 𝑎%) 𝑎!&) 𝑎!* 𝑎"*
x+8 𝑎!% 𝑎"% 𝑎#% 𝑎$%
x+9 𝑎%% 𝑎!& % 𝑎! !& 𝑎" !&
x+10

x+12

x+13

x+14

x+15

Keep in mind: Transfers to cache are in blocks
◦ Algorithm is inefficient: many words transferred to

cache that are not useful for the operation

◦ Lines in cache occupied by unused words: this
increases cache misses

Sample traversal pseudocode:
for i=1 to n

for j=1 to n
{perform operation with Aij}

end for
end for

Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑎!# 𝑎"# 𝑎## 𝑎$ #
x+3 𝑎%# 𝑎!& # 𝑎!$ 𝑎"$
x+4 𝑎!' 𝑎"' 𝑎#' 𝑎$'
x+5 𝑎%' 𝑎!& ' 𝑎!(𝑎"(
x+6 𝑎!) 𝑎") 𝑎#) 𝑎$)
x+7 𝑎%) 𝑎!&) 𝑎!* 𝑎"*
x+8 𝑎!% 𝑎"% 𝑎#% 𝑎$%
x+9 𝑎%% 𝑎!& % 𝑎! !& 𝑎" !&
x+10

x+12

x+13

x+14

x+15
Sample Processor Cache
64 words, 4 words per line

Remaining space in
cache for additional
data needed by the
operation

Let’s look at a basic MMM algorithm
(assume row-major memory)

MMM Algorithm 1 (ijk), row-major memory
◦ Consider the following pseudocode for MMM (let’s call it “ijk”):

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

◦ Multiply 𝑛×𝑛 matrices
◦ For illustration, let’s use small matrix 𝑛 = 4
◦ We are usually more concerned with large matrices

◦ Performance of algorithm: 𝑂(𝑛3) total operations -> grows cubically with larger matrices

MMM Algorithm 1 (ijk), row-major memory
◦ Consider the following pseudocode for MMM (let’s call it “ijk”):

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

◦ Cij is initialized to zero matrix
◦ i keeps track of the row
◦ j keeps track of the column
◦ k iterates elements across the row of A and the column of B

MMM Algorithm 1 (ijk), row-major memory
◦ Consider the following pseudocode for MMM (let’s call it “ijk”):

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

◦ We traverse A row-wise and traverse B columnwise
◦ Load row i of A (successive in main memory) into cache once until the

entire computation for row i of C finishes
◦ We load a new column j of B (costly: not successive in memory) whenever

innermost loop completes an iteration k=1 to n

+= ⋅

C A B

◦ Suppose we are solving for C21
◦ Elements of row 𝑖 = 2 of A are successively stored in main memory
◦ Elements of column 𝑗 = 1 of B are not stored successively

◦ Algorithm has spatial and temporal locality wrt accessing elements
of A

◦ No spatial locality accessing elements of B (cache misses,
especially for very large matrices)

MMM Algorithm 1 (ijk): Cache behavior

+= ⋅

C A B

What if we swap the i and j loops (“jik”)?
for j = 1 to n

for i = 1 to n
for k = 1 to n

Cij = Cij+ Aik*Bkj
end for

end for
end for

• No spatial locality accessing elements of A (cache
misses, especially for large matrices)

• Enjoy spatial locality accessing elements of B
• Roughly same performance

What about “kji”?
for k = 1 to n

for j = 1 to n
for i = 1 to n

Cij = Cij+ Aik*Bkj
end for

end for
end for

• Innermost loop iterates something like the following:
• C11 = C11+ A11*B11
• C21 = C21+ A21*B11
• C31 = C31+ A31*B11

• B is fixed, but traverse C and A column-wise
• Encounter cache misses for elements of both C and A

at each iteration of the innermost loop
• Likely to have poorer performance

Try it yourself!

• Try to implement ijk, jik, kji, kij, and other variants of
nested loops of MMM

• Time the execution of each and compare the results

