CoE 163

Computing Architectures and Algorithms

Matrix-Matrix Multiplication (part 1)

Why Matrix-Matrix Multiplication (MMM)?

◦ At the heart of many linear algebra algorithms ◦ Optimizing MMM is valuable to optimizing many applications, especially in the applied sciences

Warm up: Write some MMM code (practice on your own)

Three people denoted by P_1 , P_2 , P_3 intend to buy some rolls, buns, cakes, and bread. Each of them needs these commodities in differing quantities and can buy them in two shops S_1 , S_2 .

TRY IT YOURSELF (warm up): Using Python, write a program that determines which shop is the best for every person P_1 , P_2 , P_3 to pay as little as possible. The individual prices and desired quantities of the commodities are given in the following tables:

How do we optimize our MMM algorithm?

Improving locality is the key

- Goal: write our program such that temporal and spatial locality is maximized
	- Cache misses are minimized
	- Contents of the cache are used up immediately
- Matrix multiplication has inherent locality
	- Spatial locality: matrices are stored as 2d arrays (see next: row major vs column major)
	- Temporal locality: Implemented as nested loops
	- Try to optimize cache behavior in our MMM algorithm's innermost loop

Preliminaries: How are matrices stored in memory?

- Column-major vs Row-Major
	- Example shows how a matrix of floats (assume 8 bytes) is stored row-major (such as in C language) or column-major (such as in Fortran)

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}
$$

Sample code:

float A[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

Preliminaries: How are matrices stored in memory?

- Column-major vs Row-Major
	- Example shows how a matrix of floats (assume 8 bytes) is stored row-major (such as in C language) or column-major (such as in Fortran)

Sample code: float A[3][3] = {{1,2,3}, {4,5,6}, {7,8,9}};

ROW MAJOR

Preliminaries: How are matrices stored in memory?

- Column-major vs Row-Major
	- Example shows how a matrix of floats (assume 8 bytes) is stored row-major (such as in C language) or column-major (such as in Fortran)

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}
$$

Sample code:

float A[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

COLUMN MAJOR

Why does this matter?

- Table shows 2d array stored in main memory **row-wise**
- Algorithm we use must take this into account to maximize spatial locality
	- Outer loop should iterate rowwise, and then iterate across elements
	- If we iterate column-wise first, we are not accessing contiguous data in memory

Let's look at a column-major example

◦ Table shows 2d array stored in main memory **column-wise**

- Assume A is 10×10 matrix
- If we iterate row-wise first, we are not accessing contiguous data in memory

(demonstrated in next few slides)

Keep in mind: Transfers to cache are in blocks

- If we traverse one row of matrix A, we transfer other adjacent data words into cache that we are not using
- Highlighted words in diagram show row 1 of A in cache

```
Sample traversal pseudocode:
for i=1 to n
    for j=1 to n
      {perform operation with A_{i,j}}
    end for
end for
```


Sample Processor Cache 64 words, 4 words per line

Keep in mind: Transfers to cache are in blocks

- Algorithm is inefficient: many words transferred to cache that are not useful for the operation
- Lines in cache occupied by unused words: this increases cache misses

```
Sample traversal pseudocode:
for i=1 to n
    for j=1 to n
      {perform operation with A_{ij}}
    end for
end for
```
Remaining space in cache for additional data needed by the operation

Sample Processor Cache 64 words, 4 words per line Let's look at a basic MMM algorithm (assume row-major memory)

MMM Algorithm 1 (ijk), row-major memory

◦ Consider the following pseudocode for MMM (let's call it "ijk"):

```
for i = 1 to n
    for j = 1 to n
                 for k = 1 to n
                             C_{ii} = C_{ii} + A_{ik} * B_{ki}end for
     end for
end for
```
- \degree Multiply $n \times n$ matrices
	- \degree For illustration, let's use small matrix $n = 4$
	- We are usually more concerned with large matrices
- \degree Performance of algorithm: $O(n^3)$ total operations -> grows cubically with larger matrices

MMM Algorithm 1 (ijk), row-major memory

◦ Consider the following pseudocode for MMM (let's call it "ijk"):

```
for i = 1 to n
     for j = 1 to n
                 for k = 1 to n
                             C_{i,j} = C_{i,j} + A_{ik} * B_{ki}end for
     end for
end for
```
- \circ $\mathbf{c}_{i,j}$ is initialized to zero matrix
- ⁱ keeps track of the row
- ^j keeps track of the column
- ^k iterates elements across the row of A and the column of B

MMM Algorithm 1 (ijk), row-major memory

◦ Consider the following pseudocode for MMM (let's call it "ijk"):

- We traverse A row-wise and traverse B columnwise
	- Load row i of A (successive in main memory) into cache once until the entire computation for row i of C finishes
	- We load a new column j of B (costly: not successive in memory) whenever innermost loop completes an iteration k=1 to n

MMM Algorithm 1 (ijk): Cache behavior

\circ Suppose we are solving for C_{21}

- \degree Elements of row $i = 2$ of A are successively stored in main memory
- \degree Elements of column $i = 1$ of B are not stored successively
- Algorithm has spatial and temporal locality wrt accessing elements of A
- No spatial locality accessing elements of B (cache misses, especially for very large matrices)

What if we swap the i and j loops ("jik")?

- No spatial locality accessing elements of A (cache misses, especially for large matrices)
- Enjoy spatial locality accessing elements of B
- Roughly same performance

What about "kji"?

for $k = 1$ to n for $j = 1$ to n for $i = 1$ to n $C_{i,j} = C_{i,j} + A_{ik} * B_{ki}$ end for end for end for

- Innermost loop iterates something like the following:
	- $C_{11} = C_{11} + A_{11} * B_{11}$
	- $C_{21} = C_{21} + A_{21} * B_{11}$
	- $C_{31} = C_{31} + A_{31} * B_{11}$
- B is fixed, but traverse C and A column-wise
- Encounter cache misses for elements of *both* C and A at each iteration of the innermost loop
- Likely to have poorer performance

Try it yourself!

- Try to implement ijk, jik, kji, kij, and other variants of nested loops of MMM
- Time the execution of each and compare the results