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Matrix-Matrix Multiplication (part 1)



Why Matrix-Matrix Multiplication (MMM)?

◦ At the heart of many linear algebra algorithms
◦ Optimizing MMM is valuable to optimizing 

many applications, especially in the applied 
sciences



Warm up: Write some MMM code
(practice on your own)



Three people denoted by P1, P2, P3 intend to buy some rolls, buns, cakes, and 
bread. Each of them needs these commodities in differing quantities and can buy 
them in two shops S1, S2.

TRY IT YOURSELF (warm up): Using Python, write a program that determines 
which shop is the best for every person P1, P2, P3 to pay as little as possible. The 
individual prices and desired quantities of the commodities are given in the 
following tables:

Prices in shops S1 and S2

S1 S2

roll 1.50 1.00

bun 2.00 2.50

cake 5.00 4.50

bread 16.00 17.00

Demand quantity of foodstuff:

roll bun cake brea
d

P1 6 5 3 1

P2 3 6 2 2

P3 3 4 3 1



How do we optimize our MMM algorithm?



Improving locality is the key

◦ Goal: write our program such that temporal 
and spatial locality is maximized
◦ Cache misses are minimized
◦ Contents of the cache are used up immediately

◦ Matrix multiplication has inherent locality
◦ Spatial locality: matrices are stored as 2d 

arrays (see next: row major vs column major)
◦ Temporal locality: Implemented as nested 

loops
◦ Try to optimize cache behavior in our MMM 

algorithm’s innermost loop



Preliminaries: How are matrices 
stored in memory?
◦ Column-major vs Row-Major

◦ Example shows how a matrix of 
floats (assume 8 bytes) is stored 
row-major (such as in C language) 
or column-major (such as in Fortran)

𝐴 =
𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

=
1 2 3
4 5 6
7 8 9

Sample code:
float A[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

Memory 
Address Data (assume 8 bytes word length)

0x00000000

0x00000008

0x00000010

0x00000018

0x00000020

0x00000028

0x00000030

0x00000038

0x00000040



Preliminaries: How are matrices 
stored in memory?
◦ Column-major vs Row-Major

◦ Example shows how a matrix of 
floats (assume 8 bytes) is stored 
row-major (such as in C language) 
or column-major (such as in Fortran)

𝐴 =
𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

=
1 2 3
4 5 6
7 8 9

Sample code:
float A[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

Memory 
Address Data (assume 8 bytes word length)

0x00000000 A[0][0] = 𝑎!! = 1

0x00000008 A[0][1] = 𝑎!" = 2

0x00000010 A[0][2] = 𝑎!# = 3

0x00000018 A[1][0] = 𝑎"! = 4

0x00000020 A[1][1] = 𝑎"" = 5

0x00000028 A[1][2] = 𝑎"# = 6

0x00000030 A[2][0] = 𝑎#! = 7

0x00000038 A[2][1] = 𝑎#" = 8

0x00000040 A[2][2] = 𝑎## = 9

ROW MAJOR



Preliminaries: How are matrices 
stored in memory?
◦ Column-major vs Row-Major

◦ Example shows how a matrix of 
floats (assume 8 bytes) is stored 
row-major (such as in C language) 
or column-major (such as in Fortran)

𝐴 =
𝑎!! 𝑎!" 𝑎!#
𝑎"! 𝑎"" 𝑎"#
𝑎#! 𝑎#" 𝑎##

=
1 2 3
4 5 6
7 8 9

Sample code:
float A[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

Memory 
Address Data (assume 8 bytes word length)

0x00000000 A[0][0] = 𝑎!! = 1

0x00000008 A[1][0] = 𝑎"! = 2

0x00000010 A[2][0] = 𝑎#! = 3

0x00000018 A[0][1] = 𝑎!" = 4

0x00000020 A[1][1] = 𝑎"" = 5

0x00000028 A[2][1] = 𝑎#" = 6

0x00000030 A[0][2] = 𝑎!# = 7

0x00000038 A[1][2] = 𝑎"# = 8

0x00000040 A[2][2] = 𝑎## = 9

COLUMN MAJOR



Why does this matter?
◦ Table shows 2d array stored in main 

memory row-wise
◦ Algorithm we use must take this into 

account to maximize spatial locality
◦ Outer loop should iterate row-

wise, and then iterate across 
elements

◦ If we iterate column-wise first, 
we are not accessing 
contiguous data in memory

Memory 
Address Data (assume 8 bytes word length)

0x00000000 A[0][0] = 𝑎!! = 1

0x00000008 A[0][1] = 𝑎!" = 2

0x00000010 A[0][2] = 𝑎!# = 3

0x00000018 A[1][0] = 𝑎"! = 4

0x00000020 A[1][1] = 𝑎"" = 5

0x00000028 A[1][2] = 𝑎"# = 6

0x00000030 A[2][0] = 𝑎#! = 7

0x00000038 A[2][1] = 𝑎#" = 8

0x00000040 A[2][2] = 𝑎## = 9



Let’s look at a column-major example
◦ Table shows 2d array stored in main 

memory column-wise
◦ Assume A is 10×10 matrix
◦ If we iterate row-wise first, we are 

not accessing contiguous data in 
memory

(demonstrated in next few slides)

Memory 
Address Data (assume 8 bytes word length)

0x00000000 A[0][0] = 𝑎!!
0x00000008 A[1][0] = 𝑎"!
0x00000010 A[2][0] = 𝑎#!
0x00000018 A[3][0] = 𝑎$!
0x00000020 …

0x00000028 A[6][9] = 𝑎% !&
0x00000030 A[7][9] = 𝑎' !&
0x00000038 A[8][9] = 𝑎( !&
0x00000040 A[9][9] = 𝑎!& !&



Keep in mind: Transfers to cache are in blocks
◦ If we traverse one row of matrix A, we transfer 

other adjacent data words into cache that we are 
not using

◦ Highlighted words in diagram show row 1 of A in 
cache

Sample traversal pseudocode:
for i=1 to n

for j=1 to n
{perform operation with Aij}

end for
end for

Sample Processor Cache
64 words, 4 words per line

Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑎!# 𝑎"# 𝑎## 𝑎$ #
x+3 𝑎%# 𝑎!& # 𝑎!$ 𝑎"$
x+4 𝑎!' 𝑎"' 𝑎#' 𝑎$'
x+5 𝑎%' 𝑎!& ' 𝑎!( 𝑎"(
x+6 𝑎!) 𝑎") 𝑎#) 𝑎$)
x+7 𝑎%) 𝑎!& ) 𝑎!* 𝑎"*
x+8 𝑎!% 𝑎"% 𝑎#% 𝑎$%
x+9 𝑎%% 𝑎!& % 𝑎! !& 𝑎" !&
x+10

x+12

x+13

x+14

x+15



Keep in mind: Transfers to cache are in blocks
◦ Algorithm is inefficient: many words transferred to 

cache that are not useful for the operation

◦ Lines in cache occupied by unused words: this 
increases cache misses

Sample traversal pseudocode:
for i=1 to n

for j=1 to n
{perform operation with Aij}

end for
end for

Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑎!# 𝑎"# 𝑎## 𝑎$ #
x+3 𝑎%# 𝑎!& # 𝑎!$ 𝑎"$
x+4 𝑎!' 𝑎"' 𝑎#' 𝑎$'
x+5 𝑎%' 𝑎!& ' 𝑎!( 𝑎"(
x+6 𝑎!) 𝑎") 𝑎#) 𝑎$)
x+7 𝑎%) 𝑎!& ) 𝑎!* 𝑎"*
x+8 𝑎!% 𝑎"% 𝑎#% 𝑎$%
x+9 𝑎%% 𝑎!& % 𝑎! !& 𝑎" !&
x+10

x+12

x+13

x+14

x+15
Sample Processor Cache
64 words, 4 words per line

Remaining space in 
cache for additional 
data needed by the 
operation



Let’s look at a basic MMM algorithm
(assume row-major memory)



MMM Algorithm 1 (ijk), row-major memory
◦ Consider the following pseudocode for MMM (let’s call it “ijk”):

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

◦ Multiply 𝑛×𝑛 matrices
◦ For illustration, let’s use small matrix 𝑛 = 4
◦ We are usually more concerned with large matrices

◦ Performance of algorithm: 𝑂(𝑛3) total operations -> grows cubically with larger matrices



MMM Algorithm 1 (ijk), row-major memory
◦ Consider the following pseudocode for MMM (let’s call it “ijk”):

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

◦ Cij is initialized to zero matrix
◦ i keeps track of the row
◦ j keeps track of the column
◦ k iterates elements across the row of A and the column of B



MMM Algorithm 1 (ijk), row-major memory
◦ Consider the following pseudocode for MMM (let’s call it “ijk”):

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

◦ We traverse A row-wise and traverse B columnwise
◦ Load row i of A (successive in main memory) into cache once until the 

entire computation for row i of C finishes
◦ We load a new column j of B (costly: not successive in memory) whenever 

innermost loop completes an iteration k=1 to n

+= ⋅

C A B



◦ Suppose we are solving for C21
◦ Elements of row 𝑖 = 2 of A are successively stored in main memory
◦ Elements of column 𝑗 = 1 of B are not stored successively

◦ Algorithm has spatial and temporal locality wrt accessing elements 
of A

◦ No spatial locality accessing elements of B (cache misses, 
especially for very large matrices)

MMM Algorithm 1 (ijk): Cache behavior

+= ⋅

C A B



What if we swap the i and j loops (“jik”)?
for j = 1 to n

for i = 1 to n
for k = 1 to n

Cij = Cij+ Aik*Bkj
end for

end for
end for

• No spatial locality accessing elements of A (cache 
misses, especially for large matrices)

• Enjoy spatial locality accessing elements of B
• Roughly same performance



What about “kji”?
for k = 1 to n

for j = 1 to n
for i = 1 to n

Cij = Cij+ Aik*Bkj
end for

end for
end for

• Innermost loop iterates something like the following:
• C11 = C11+ A11*B11
• C21 = C21+ A21*B11
• C31 = C31+ A31*B11

• B is fixed, but traverse C and A column-wise
• Encounter cache misses for elements of both C and A 

at each iteration of the innermost loop
• Likely to have poorer performance



Try it yourself!

• Try to implement ijk, jik, kji, kij, and other variants of 
nested loops of MMM

• Time the execution of each and compare the results


