
CoE 163
Computing Architectures and Algorithms

03b: Parallel Programming Introduction

SEQUENTIAL
PROGRAMMING

2

So far, you have been taught that
each line of your code is
executed sequentially. It’s like a
series of commands the
computer just executes one after
another.

3

SEQUENTIAL PROGRAMMING

int main() {
 int x[] = {1, 6, 3};
 return x[0] + x[1] + x[2];
}

S
ta

rt

Create x[3]

Push 1

Push 6

Push 3

Set return
value to 0

Add 1

Add 6

Add 3 En
d

VON NEUMANN
ARCHITECTURE

4

Most common form of computer
architecture - discovered in
around 1940s.

Executes instructions
sequentially through a central
processing unit (CPU) attached
to input, output, and memory
streams.

CPU
Central processing unit

5

VON NEUMANN ARCHITECTURE

ALU
Arithmetic
logic unit

Control Unit
Input Output

Memory

Cache

Bus
MMIO

Branch prediction

Registers

FLYNN’S TAXONOMY

6

Classify computer architectures
based on number of instruction
and data streams available.

Most PCs are only SISD until
around 2010s, when
multiple-core CPUs became
possible.

7

FLYNN’S TAXONOMY

SISD
single instruction,
single data

SIMD
single instruction,
multiple data

MISD
multiple instruction,
single data

MIMD
multiple instruction,
multiple data

Data stream count

in
st

ru
ct

io
n

st
re

am
s

co
un

t

8

FLYNN’S TAXONOMY: SISD

Instr A, In A

CPUInstr B, In B

Instr C, In C

Output

● Can only process one instruction at a time, and output one
data at a time

● Only has one input stream and one output stream - queueing is
needed

● Found in older single-core PCs and mainframes

exe

out
A

B

C

9

FLYNN’S TAXONOMY: SIMD

Output

A

B

C

● Multiple processors are loaded with the same instructions, but
working on different data units

● Usually used to process smaller outputs to build a larger output
● Found in GPUs, which usually work on repetitive units of data

CPU

Core A

Core B

Core C

In A

In B

In C

Instr A

10

FLYNN’S TAXONOMY: MISD

Output

A

B

C

● Multiple processors are loaded with different instructions, but
working on the same data

● The architecture is not used a lot
● Found in fault tolerance systems and the US Space Shuttle

computer - but nothing majorly available

CPU

Core A

Core B

Core C

Instr A

Instr B

Instr C

In A

11

FLYNN’S TAXONOMY: MIMD

Output

A

B

C

● Multiple processors are loaded with different instructions, and
working on different data

● This architecture saves time since tasks can now be executed
in parallel

● Found in modern computing systems

CPU

Core A

Core B

Core C

Instr A, In A

Instr B, In B

Instr C, In C

BEYOND SEQUENTIAL
PROGRAMMING

12

With a queue in place, it takes
time to execute a long list of
instructions. A single CPU is too
limiting!

What if we split our instructions
such that we can maximize our
time and resources?

13

PARALLELISM

● Execute instructions at the same time
● Used to perform more work for less time by decomposing a

problem such that each piece can run independently of each
other simultaneously

Output

A

B

C

CPU

Core A

Core B

Core C

Instr A, In A

Instr B, In B

Instr C, In C

14

CONCURRENCY

● Split a problem into instructions that can be executed
independently

● Used to improve CPU utilization by getting a piece of
instruction from a pool if it becomes idle due to various reasons
(I/O wait, locks, etc.)

Instr B1 Instr B2

Instr A1 Instr A1

Instr B1

Instr A2

I/O wait
A1

End A1 End B1 I/O wait
A2

CPU usage time

I/O end
A1

PARALLEL
PROGRAMMING

15

In comparison to sequential
programming, parallel programming
uses multiple computing modules to
solve a problem.

It saves time because it can now
execute tasks at the same time -
multitasking!

It enables concurrency!

PARALLEL
PROGRAMMING MODELS

16

Parallel programming programs can
be modeled in various ways with two
broad categories

◦ Process interaction
◦ Communication between

different parallel processes
◦ Problem decomposition

◦ Formulation of parallel
processes

PROCESS INTERACTION

17

Programs can be further divided into
different categories:

◦ Shared space
◦ Like bulletin boards

◦ Message passing
◦ Like postal mail

18

PROCESS INTERACTION: SHARED
SPACE
● Multiple tasks share a single address space
● Locks and semaphores are used to “synchronize” and control

access to the memory and prevent data conflicts

Instr B1

Instr A1

A1 start
use

CPU usage time

A1 end
use

Instr B1

B1 start
use

B1 end
useA1 wait

Instr A1

A1 start
use

B1 wait A1 end
use
B1 start
use

Instr B1

Variable
usage

Instr A1

19

PROCESS INTERACTION:
MESSAGE PASSING
● Multiple tasks communicate with each other through some

channel
● Blocking channels are used to “synchronize” and control

access to the memory and prevent data conflicts

Instr B1

Instr A1

A1 send

CPU usage time

Instr B1

B1 wait

B1 send

Instr A1

A1 wait A1
receive

Instr B1

Channel usage
B1
receive

PROCESS
DECOMPOSITION

20

Programs can be further divided into
different categories:

◦ Task parallelism
◦ Split program into different

specialized tasks
◦ Data parallelism

◦ Split data for processing to
tasks nodes

Output

21

PROCESS DECOMPOSITION:
TASKS
● Program split into several tasks
● An MIMD/MISD architecture falls under this type
● Synchronization is explicit through mutex locks and

semaphores
● Operating on private data

Data

Task A Task B Task C Task D

22

PROCESS DECOMPOSITION: DATA

● Data split into pieces for processing of copies of tasks
● An MIMD/SIMD architecture falls under this type
● Communication is usually through shared memory while

synchronization is implicit through locksteps (atomic
transactions)

● Operating on shared data

Output

Data

Task A1 Task A2 Task A3 Task A4

PARALLELIZING A
PROGRAM

23

● Can the program be parallelized?
○ Does it have portions we can

copy and execute over all the
data repetitively?

● Is it worth it to parallelize?
○ Is this portion of the program

doing the most work?
● Where are the data dependencies?

○ Do we need to execute this
part before moving on?

PARALLELIZING A
PROGRAM

24

● Are there any bottlenecks?
○ Where do we need to wait for

the data to be available?
● How do we decompose the

program?

CONSIDER...

25

We want to create our own
pseudorandom number
generation for our game rigging
needs.

26

PSEUDORANDOM GENERATOR

● Set first a number S (“seed”) where the number generation will
start

● Pick three constants a (large prime), c (large prime), and m that
will influence the next values of the generator

● Use this value to generate the next value using the same
equation!

Generated
numbers from 0
to m - 1!

27

RANDOMIZER: OBVIOUS
SOLUTION
● Run the simple equation on a loop - save the previous iteration

result and use it on the next
● This is sequential programming
● What if we want to get the millionth number in the sequence?

Will it be fast enough?

x = S
k = 1000000

for n in range(0, k):
x = (a * x + c) % m

28

RANDOMIZER: OBSERVATION

● Reform the equation (generator) to find the kth random number
from the some nth random number

● From the nth number, we can generate k more random
numbers

● Maybe we can leverage this observation to hasten the
generation?

29

RANDOMIZER: PARALLEL
SOLUTION
● Generate k random numbers on a loop sequentially
● Send out these k numbers to separate threads/processes to

generate k numbers in parallel
● If we want to get the millionth random number, we only need to

spend around 1000 steps for k=1000 compared to a million
steps

x = [S]
k = 1000

for n in range(1, k):
x.append((a * x[n - 1] + c) % m)

Send elements of x to different threads/processes

EMBARRASSINGLY
PARALLEL PROGRAM

30

There’s nothing shameful about it,
but is instead an idiom for
“overabundance”. These programs
are naturally “easy” and “simple”.

Programs may need non-trivial data
partition (input), data collection
(output), and scheduling for the
algorithm to work.

EMBARRASSINGLY
PARALLEL PROGRAM

31

These programs have the following
characteristics:

◦ Parallel processes working
independently

◦ Almost no needed
communication between
processes

32

RANDOMIZER: PARALLEL
SOLUTION
● Generate k random numbers on a loop sequentially
● Send out these k numbers to separate threads/processes to

generate k numbers in parallel
● If we want to get the millionth random number, we only need to

spend around 1000 steps for k=1000 compared to a million
steps

init_arr = []
x = S
k = 1000

for n in range(1, k):
 x = (a * x + c) % m)
 init_arr.append(x)

Send elements of x to different threads/processes

PARALLEL PYTHON:
GIL

33

The global interpreter lock (GIL) is
a lock that ensures that each
thread runs one at a time.

This means that threading is a
concurrency mechanism in
Python, but we can still use
multiple processors to achieve
true parallelism.

34

RANDOMIZER: PARALLEL PYTHON

def compute_kth_pool(a, c, m, k, ith, prev_item):
a_pow = a ** k
next_k = (a_pow * prev_item + c * ((a_pow - 1) // (a

- 1))) % m

return (ith, next_k)

● The multiprocessing and threading libraries enable
concurrency in Python

● threading sends function to different threads and is
bounded by the GIL

● multiprocessing sends functions to different processors

35

RANDOMIZER: MULTIPROCESS
init_arr_pool = [(a * S + c) % m]

for _ in range(1, k):
init_arr_pool.append((a * init_arr_pool[-1] + c) % m)

pool = multiprocessing.Pool(processes=4)

for each_k in range(1, rand_num_idx // k):
next_ans = []

for z in range(k):

 next_ans.append(pool.apply_async(compute_kth_pool,
(a, c, m, k, z, init_arr_pool[z])))

for each_ans in next_ans:
 i_prev_idx, next_val = each_ans.get()
 init_arr_pool[i_prev_idx] = next_val

pool.close()

RANDOMIZER: TIME
PROFILE

36

Setting-up threads or processes
usually have overhead time (to
spawn and collect outputs), so it
can sometimes be slower than
serial programs.

Serial: ~10 ms

Multiprocess*: ~1000 ms

* Getting 10kth number, 4 processors with k = 10

TIPS

37

● Don’t confuse parallelism and
concurrency!

● Parallelize a program only when
necessary

● Consider overhead of setting-up
each subprocess or thread
when formulating parallel
programs

● Practice decomposing
problems into units

RESOURCES

38

● Short article on parallel
programming

● Parallel programming tutorial
from the Lawrence Livermore
National Laboratory

● Short lecture on parallel
programming from Cornell
University

https://penberg.org/blog/parallel.html
https://penberg.org/blog/parallel.html
https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf
https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf
http://www.cac.cornell.edu/education/training/StampedeJune2013/ParallelProgramming.pdf
http://www.cac.cornell.edu/education/training/StampedeJune2013/ParallelProgramming.pdf

RESOURCES

39

● Parallel programming models
from the Florida State University

● Article on Python threading
● Article on Python

multiprocessing

https://www.cs.fsu.edu/~engelen/courses/HPC/Models.pdf
https://realpython.com/intro-to-python-threading/
https://gerard.run/posts/python-mp-1/
https://gerard.run/posts/python-mp-1/

CoE 163
Computing Architectures and Algorithms

03b: Parallel Programming Introduction

