
CoE 163
Computing Architectures and Algorithms

03b: x86 Assembly Introduction

2

COMPUTER
ARCHITECTURE
A computer architecture
describes how a computer
should work, from the hardware
to the software.

This also includes any
peripherals that may be
connected to it.

3

COMPUTER ARCHITECTURE

Instruction Set
Architecture (ISA)

Abstract model that defines
the what a computer should
look like from a
programmer’s perspective.

Microarchitecture

Implementation of an ISA
with several factors in
consideration, such as
component interconnection,
cache and memory sizes,
etc.

Implementation

Hardware design engineering
- the microarch is converted
into a concrete and tangible
processor.

ISA CLASSIFICATION

4

ISAs can be classified in different
ways,. More commonly, they can be
split into two types based on
instruction complexity.

◦ Complex instruction set
◦ Reduced instruction set

5

ISA: CISC

A complex instruction set computer
(CISC) has many specialized
instructions to support different use
cases.

This is easier to program, but
hardware should be able to support
the huge amount of instructions.

6

ISA: RISC

A reduced instruction set computer
(RISC) has a basic set of instructions
- at least enough for it to be Turing
complete.

They are easy to implement in
hardware, but software has to make
do with the reduced number of
instructions.

7

MAINSTREAM ISAs

x86 (CISC)

Most commonly found in
desktop and laptop
computers

MIPS (RISC)

Most commonly found in
gaming consoles and small
electronics such as routers

MIPS is recently abandoned
in favor of RISC-V

ARM (RISC)

Most commonly found in
cellphones, tablets, and small
single-board computers like
the Raspberry Pi

8

ASSEMBLY PROGRAMMING
MODEL

CPU Memory

Program counter (PC) Data

Registers Instructions

9

x86_64 ISA

In a past course, MIPS was
introduced (which is currently being
abandoned). However, desktop and
laptops use 64-bit x86 processors.

To be able to maximize programs, we
should also be able to read and
understand programs written in the
x86_64 ISA.

10

x86_64 ISA

An instruction can have at most 15
bytes. It is little-endian (i.e. legacy
prefixes/LSB at lowest address).

Normal (32-bit) x86 are also encoded
in the same way.

11

x86_64 ISA

Prefix; 1B-4B

Opcode; 1B-4B

ModR/M; 1B

SIB; 1B

Displacement; 1B, 2B, 4B, 8B

Immediate; 1B, 2B, 4B, 8B

Optional - legacy prefixes for
old instructions

Required - can have additional
legacy prefixes

May be required - mode,
register, operand

May be required - scale,
index, base

May be required - offset

May be required - immediate
(constant) value

12

x86_64 REGISTERS

A register is a small memory cell
within the CPU. There are 16 64-bit
general-purpose registers in x86_64.

Some of these registers have special
purposes, such as the stack pointer
rsi.

The registers have “root words” (a,
b, c, d, si, di, bp, 8-15)
affixed by a length identifier (r, e,
w, d, h, l, b).

13

x86_64 REGISTERS

A portion of each of the 16 registers can be referred to by writing the
relevant affix, such as getting a quad (8 bytes), double word (4 bytes),
word (2 bytes), and byte.

rax

eax

ax

ah al

LSB

1 byte

MSB

14

x86_64 SYNTAX

Unlike MIPS, the destination is implied to
contain one of the operands to instructions
that require at least two operands

x86 has two major syntax flavors: AT&T
and Intel.

◦ AT&T is common in Linux systems.
◦ Intel is common in Windows

systems.

For the rest of the discussion, we will be
using Intel syntax.

15

x86_64 SYNTAX

● Order is dest, src
● Uses registers as is
● Uses immediates as is
● Hex numbers are suffixed by

“h”
● Memory dereferencing uses

square brackets []
● Memory addressing uses

math operations
● Uses type keywords (e.g.

DWORD PTR, WORD PTR)
to denote operand size

● Order is src, dest
● Registers are prefixed by a

percent %
● Immediates are prefixed by a

dollar sign $
● Hex numbers are prefixed by

“0x”
● Memory dereferencing uses

parentheses ()
● Memory addressing uses

function syntax
● Uses operation affixes (e.g.

movd, movl) to denote
operand size

Intel AT&T

16

x86_64 SYNTAX

mov eax, 1
movl $1, %eax

mov eax, [ebx + 3]
movl 3(%ebx), eax

add eax, [ebx + ecx * 2h]
addl (%ebx, %ecx, 0x2), %eax

mov QWORD PTR [ebx], 2
movq $2, (ebx)

move a 32-bit value of 1 into eax

move the value in address ebx +
3 into eax

add the values in addresses ebx
+ ecx * 0x2 and eax, then
store the answer into eax

move the 64-bit value of 2 in
address held by ebx

17

x86_64 ASSEMBLERS

There are several x86 assemblers
available. The following lists the most
popular ones

◦ GNU Assembler (GAS)
◦ Flat Assembler (FASM)
◦ Netwide Assembler (NASM)
◦ Microsoft Macro Assembler (MASM)

ASSEMBLY IN C/C++

18

GCC supports writing and
compiling of assembly code
within C/C++.

It is also possible to write the
assembly code separately as a
.s file.

19

ASSEMBLY IN C/C++

Subroutines in assembly should have an equivalent prototype in the
C/C++ part of the code.

// outside main()
extern “C” int add_ints(int, int);

[...]
// in main()
int c = add_ints(a, b)
cout << “add_ints() returned “ << c << endl;
[...]

C++

20

ASSEMBLY IN C/C++

Subroutines should be written using the calling convention suitable
for the operating system. The Windows convention is used in this
example

; Windows
add_ints:
 mov rax, rcx
 mov rax, rdx

 ret

Intel ASM

21

ASSEMBLY IN C/C++

Using NASM, the asm code should be first compiled into object
code. This object code is then used with gcc to compile the program
into an executable.

$ nasm.exe -f win64 hello.s
$ g++ hello.cpp hello.obj -o hello

CMD

22

RESOURCES

◦ x86 introduction from the
University of Washington (US)

◦ x86 reference from the
University of Virginia (US)

https://courses.cs.washington.edu/courses/cse351/18wi/lectures/07/CSE351-L07-x86-Intro_18wi.pdf
https://aaronbloomfield.github.io/pdr/book/x86-64bit-asm-chapter.pdf

CoE 163
Computing Architectures and Algorithms

03b: x86 Assembly Introduction

