CoE 163

Computing Architectures and Algorithms

Linear Algebra Software Libraries

o

L 4

Recap

o Previous discussion showed how careful implementation

of an algorithm can improve memory/cache behavior of

MMM

o Some techniques that were explored:

o Choosing the better loop order

o Blocking

o General ideas

o |f matrix is large, cache cannot hold all the matrix
operands -> cache misses are costly

o Shorter strides can be advantageous in traversing
elements of a matrix

\ 4

Recap

o Parameters to consider for optimization

O

©)
©)
©)

Column-major vs row-major

Size of cache

Size of matrices

(MMM with blocking) Size of blocks

3
oN—n\/%

o Selection of N that optimizes our algorithm depends on
size of matrix n and size of cache M

. @ Basic Linear Algebra Subroutines (BLAS)

\ 4

.

Standardizing common operations can
be cost-effective

o QOperations like MMM are so common

o Manufacturers have standardized these common
operations as the Basic Linear Algebra Subroutines
(BLAS)

o Can achieve portability and efficiency for wide range of
kernel scientific computations

The BLAS (http://www.netlib.org/blas/)

o High quality “building block” routines for basic vector
and matrix operations
¢ o Level 1: scalar, vector, & vector-vector operations
¢ o Level 2: matrix-vector operations
¢ o Level 3: matrix-matrix operations
o Provides specification of the semantics and syntax for
the operations
‘ ’ o Computer vendors or software vendors provide
implementations of BLAS that are optimized for specific
machine architectures

http://www.netlib.org/blas/

The BLAS (http://www.netlib.org/blas/)

o Platform independent and free library alternatives are

available:

o ATLAS automatically generates an optimized BLAS
library for a given architecture

o OpenBLAS (a fork of GotoBLAS) is a free open-source

O

alternative to the vendor BLAS implementations

Packaged on many end-user Linux distributions such as
Ubuntu

Readily available for users who perform calculations on
their personal computers

Decent speed and fairly competitive with Vendor BLAS

http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/
http://www.openblas.net/

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

* o

N

y=ax+y

where a € Rand x,y € R"

Example values when n = 2:
=3 y=[}]. =[]

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

A
¢ y=ax+y

N

Let's compute the number of memory
operations (read or write to/from
memory)

**Assume an optimized/efficient
algorithm is being used

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

* o

N

y=ax+y

|

Load a
into
register
once

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

* o

N

y=ax+y

™\

Lloada Readn
into elements

register of x into
once cache

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

* o

N

y=ax+y—_
T \ Read n

elements

loadae Readn Ofyinto
into elements cache
register of x into
once cache

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

\g

¢ y=ax+y—_
/ \ Read n
elements

Write/update

N

loadae Readn Ofyinto

n elements into elements cache
of ybackto ogister of x into
memory once cache

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

\g

¢ y=ax+y—_
/ \ Read n
elements

N

Write/lupdate | o544 Readn of y into

n elements into elements cache
of ybackto ogister of x into
memory once cache

n + 1 + n + n

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

\g

¢ y=ax+y—_
/ \ Read n
elements

N

Write/lupdate | o544 Readn of y into

n elements into elements cache
of ybackto ogister of x into
memory once cache

3n + 1 memory operations

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

* o

N

y=ax+y

2n floating point operations

3n + 1 memory operations

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

¢ Consider the saxpy operation (“sum of ax plus y”):

* o

N

y=ax+y

Approximately 3 memory operations for
every 2 floating point operation

2n
In+1

wl NS

Performance of BLAS

o Level 2: matrix-vector operations

'Y y=Ax+y
2 ¢ where A € R™" and x,y € R"

N

o mxn = n? data reads for the matrix
o 3n for reading x, y from memory and writing y to memory
o m = n? + 3n =~ n? memory operations

Performance of BLAS

o Level 2: matrix-vector operations

'Y y=Ax+y
2 ¢ where A € R™" and x,y € R"

N

\ 4

o mxn = n? data reads for the matrix

o 3n for reading x, y from memory and writing y to memory
o m = n? + 3n ~ n? memory operations

o f = 2(nxn) = 2n? floating point operations

Performance of BLAS

Level 2: matrix-vector operations

y=Ax+Yy

where A € R™" and x,y € R"

nxn = n? data reads for the matrix

3n for reading x, y from memory and writing y to memory
m = n? + 3n =~ n? memory operations

f = 2(nxn) = 2n? floating point operations

q ~ 2n?*/n?* ~ 2

Performance of BLAS

o Level 2: matrix-vector operations

y=Ax+Yy

where A € R™" and x,y € R"

nxn = n? data reads for the matrix

3n for reading x, y from memory and writing y to memory
m = n? + 3n ~ n? memory operations

f = 2(nxn) = 2n? floating point operations
q=~2n%/n*=~2

Level 2 operations have slightly better q value

€ o slightly more efficient than Level 1

Performance of BLAS
o Level 3: matrix-matrix operations

C=A-B+C
where 4, B, C € R™"

n? reads for A

n? reads for B

2n? memory operations for C (read and write)
m = 4n? memory operations

Performance of BLAS
o Level 3: matrix-matrix operations

C=A-B+C
where 4, B, C € R™"

n? reads for A

n? reads for B

2n? memory operations for C (read and write)

m = 4n? memory operations

f = 2n3 floating point operations (recall previous slides)

Performance of BLAS

o Level 3: matrix-matrix operations

C=A-B+C
where A4, B, C € R™*"

n? reads for A

n? reads for B

2n% memory operations for C (read and write)

m = 4n? memory operations

f = 2n3 floating point operations (recall previous slides)
_ 2n3 n
===

o Level 3 is most efficient

Performance of BLAS

o Level 3: matrix-matrix operations

C=A-B+C
where A4, B, C € R™*"

n? reads for A

n? reads for B

2n% memory operations for C (read and write)

m = 4n? memory operations

f = 2n3 floating point operations (recall previous slides)

_ 2n3 n

 4n? 2
o (we can further optimize MMM, as discussed previously)

Performance of BLAS

Operation Definition f m q= f/m
saxpy y=a-xr+yor 2n | 3n+1 2/3
(BLASI) Ui = ax; + yi
=10 n
Matrix-vector mult |y = A-x + y or 2n n* + 3n 2
‘ (BLAS2) s = Z;’ | @i + Yi
N3 A n
‘ C=A-B+Cor 2n” An? n/2

Matrix-matrix mult
‘ (BLAS3)

t,7=1,..., n

‘ ‘ o BLAS level 3 is most efficient

Table taken from James W.
Demmel. Applied Numerical
Linear Algebra. SIAM, 1997.

Performance of BLAS

Operation Definition f m q= f/m
saxpy y=a-xr+yor 2n | 3n+1 2/3
(BLASI) Ui = ax; + yi
=10 n
Matrix-vector mult |y = A-x + y or 2n® | n* 4 3n 2
(BLAS2) Yi = Z;’ | QT + Yi
=01 L n
.\l;Ltrix-umtrix mult | C = A-B+C or 2n? in® n/2 Table taken from James W.
(BLAS3) Cij - Zf 1 Qikbjk + Cij Demmel. Applied Numerical
Lj=1.... " Linear Algebra. SIAM, 1997.

o BLAS level 3 is most efficient

o If we have an optimized MMM subroutine, we can
improve the performance of our computations by
reordering our algorithm in terms of MMM versus
saxpy Or matrix-vector mult

©)

Optimized subroutines vary from
machine to machine

Architecture affects what is algorithm will achieve better

memory behavior

Parameters to consider: blocking factors, loop unrolling

depths, software pipelining strategies, loop ordering,

register allocations, instruction scheduling

Example:

o Cache size and how many levels of cache impact the
ideal matrix block sizes and shapes to use

o Instructions are also cached -- we cannot unroll all the
loops if cache size is too limited

¢ Automatically Tuned Linear Algebra
Software

o

\ 4

.

©)

Automatic generation of highly
efficient Level 3 BLAS

Code generator to automatically create optimized on-

chip, cache contained, (i.e., in Level 1 (L1) cache) matrix

multiply

o Timings determine the correct blocking and loop
unrolling factors for on-chip matrix multiply

Isolate the machine-specific features of the operation to

several routines that deal with on-chip matrix multiply

The rest of the code is fixed across architectures

o Handles looping, blocking, etc. to build complete
matrix-matrix multiply from the on-chip multiply

Automatically generated on-chip
matrix multiply

o C—A'B+¢C

o Chosen as opposedto C <« AB +C

o generates largest (flops)/(cache misses) ratio when
the loops are written with no unrolling

o Matrix A brought into cache, loops over columns of B

(arbitrary choice of which matrix to bring in and loop

over the other)

Automatically generated on-chip

matrix multiply
o Factors considered for maximal cache reuse:

o All of A must fit into cache, and at least two columns of
B and 1 cache line of C

Automatically generated on-chip
matrix multiply

o Factors considered for maximal cache reuse:
o Instruction cache overflow — Not all of the loops can
be unrolled; on-chip multiply instructions must fit L1

‘ cache
® o

N

Automatically generated on-chip
matrix multiply

o Factors considered for maximal cache reuse:
o Floating point instruction ordering

‘ o Most modern computers have pipelined floating point
‘ units
‘ o Results of an operation may not be available until X cycles

later, where X is number of stages in floating point pipe
o ‘“Latency hiding” — separate multiply and add; issue
unrelated instructions between them

N

Automatically generated on-chip
matrix multiply

o Factors considered for maximal cache reuse:
o Loop overhead

‘ o Remove loop overhead by loop unrolling
‘ o If order of instructions must not change, unroll the loop
‘ over the dimension common to A and B (i.e. unroll the “k”
loop)

o Unrolling over other dimensions changes order of
instructions and memory access patterns

N

Automatically generated on-chip
matrix multiply

o Factors considered for maximal cache reuse:
o Exposure of possible parallelism
‘ o Many modern architectures have multiple floating point

‘ units

‘ o For perfect parallel speedup: memory fetch should also

be able to operate in parallel (hardware limitation)

o Compiler must recognize opportunities for parallelization
o Unroll “i" and/or “J” loops; choose correct register allocations to
avoid false dependencies

Automatically generated on-chip
matrix multiply

o Factors considered for maximal cache reuse:
o The number of outstanding cache misses the
hardware can handle before execution is blocked

o maximal number of cache misses should be issued each
< cycle, until all memory is in cache or used

o Use “” and “|” loop unrolling to control cache-hit ratio

2\

How does ATLAS automatically
generate the code?

Code generator coupled with a timer routine to take
initial information

Tries different strategies for loop unrolling and latency
hiding

Chooses the case which demonstrated the best
performance

User may enter size of L1 cache, or program tries to
calculate it

Performance of ATLAS

o "Has been able to match or exceed the performance of
the vendor supplied version of matrix multiply in almost
every case”

o ATLAS is used by:

o MATLAB (v6.0 or higher)

o Octave

¢ Which BLAS are used by NumPy Python
module?

o

\ 4

.

¢ Check out the output of
numpy.show_config()

\ 4

T

Summary

o BLAS have been defined for commonly used linear

algebra operations

o Vendors implement optimized BLAS specific to their

machine architecture

o ATLAS automatically tunes the on-chip matrix multiply

o Reordering of your program to use the BLAS, especially

BLAS Level 3 (MMM), optimizes the performance of your

code

o Try it yourself!

o Compare the performance of an algorithm that uses
self-written MMM function versus one that uses what
numpy offers

\ 4

