
CoE 163
Computing Architectures and Algorithms

Linear Algebra Software Libraries

Recap

o Previous discussion showed how careful implementation
of an algorithm can improve memory/cache behavior of
MMM

o Some techniques that were explored:
o Choosing the better loop order
o Blocking

o General ideas
o If matrix is large, cache cannot hold all the matrix

operands -> cache misses are costly
o Shorter strides can be advantageous in traversing

elements of a matrix

Recap

o Parameters to consider for optimization
o Column-major vs row-major
o Size of cache
o Size of matrices
o (MMM with blocking) Size of blocks

o 𝑁 = 𝒏 𝟑
𝑴

o Selection of 𝑁 that optimizes our algorithm depends on
size of matrix 𝑛 and size of cache 𝑀

Basic Linear Algebra Subroutines (BLAS)

Standardizing common operations can
be cost-effective
o Operations like MMM are so common
o Manufacturers have standardized these common

operations as the Basic Linear Algebra Subroutines
(BLAS)

o Can achieve portability and efficiency for wide range of
kernel scientific computations

The BLAS (http://www.netlib.org/blas/)

o High quality “building block” routines for basic vector
and matrix operations
o Level 1: scalar, vector, & vector-vector operations
o Level 2: matrix-vector operations
o Level 3: matrix-matrix operations

o Provides specification of the semantics and syntax for
the operations

o Computer vendors or software vendors provide
implementations of BLAS that are optimized for specific
machine architectures

http://www.netlib.org/blas/

The BLAS (http://www.netlib.org/blas/)

o Platform independent and free library alternatives are
available:
o ATLAS automatically generates an optimized BLAS

library for a given architecture
o OpenBLAS (a fork of GotoBLAS) is a free open-source

alternative to the vendor BLAS implementations
o Packaged on many end-user Linux distributions such as

Ubuntu
o Readily available for users who perform calculations on

their personal computers
o Decent speed and fairly competitive with Vendor BLAS

http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/
http://www.openblas.net/

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚
where 𝜶 ∈ ℝ and 𝒙, 𝒚 ∈ ℝ𝒏

Example values when 𝑛 = 2:
𝛼 = 3, 𝑦 = 1

2 , 𝑥 = 3
3

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

Let’s compute the number of memory
operations (read or write to/from

memory)

**Assume an optimized/efficient
algorithm is being used

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

Load 𝛼
into

register
once

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

Load 𝛼
into

register
once

Read 𝑛
elements
of 𝑥 into
cache

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

Load 𝛼
into

register
once

Read 𝑛
elements
of 𝑥 into
cache

Read 𝑛
elements
of 𝑦 into
cache

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

Load 𝛼
into

register
once

Read 𝑛
elements
of 𝑥 into
cache

Read 𝑛
elements
of 𝑦 into
cache

Write/update
𝑛 elements
of 𝑦 back to

memory

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

Load 𝛼
into

register
once

Read 𝑛
elements
of 𝑥 into
cache

Read 𝑛
elements
of 𝑦 into
cache

Write/update
𝑛 elements
of 𝑦 back to

memory

𝑛 1 𝑛 𝑛+ + +

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

Load 𝛼
into

register
once

Read 𝑛
elements
of 𝑥 into
cache

Read 𝑛
elements
of 𝑦 into
cache

Write/update
𝑛 elements
of 𝑦 back to

memory

3𝑛 + 1 memory operations

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

3𝑛 + 1 memory operations

2𝑛 floating point operations

Performance of BLAS

o Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚
Approximately 3 memory operations for

every 2 floating point operation

𝑞 =
𝑓
𝑚
=

2𝑛
3𝑛 + 1

𝒒 ≈
𝟐
𝟑

Performance of BLAS

o Level 2: matrix-vector operations

𝒚 ≔ 𝑨𝒙 + 𝒚
where 𝑨 ∈ ℝ𝒏×𝒏 and 𝒙, 𝒚 ∈ ℝ𝒏

o 𝒏×𝒏 = 𝒏𝟐 data reads for the matrix
o 𝟑𝒏 for reading 𝑥, 𝑦 from memory and writing 𝑦 to memory
o 𝒎 = 𝒏𝟐 + 𝟑𝒏 ≈ 𝒏𝟐 memory operations

Performance of BLAS

o Level 2: matrix-vector operations

𝒚 ≔ 𝑨𝒙 + 𝒚
where 𝑨 ∈ ℝ𝒏×𝒏 and 𝒙, 𝒚 ∈ ℝ𝒏

o 𝒏×𝒏 = 𝒏𝟐 data reads for the matrix
o 𝟑𝒏 for reading 𝑥, 𝑦 from memory and writing 𝑦 to memory
o 𝒎 = 𝒏𝟐 + 𝟑𝒏 ≈ 𝒏𝟐 memory operations
o 𝒇 = 𝟐 𝒏×𝒏 = 𝟐𝒏𝟐 floating point operations

Performance of BLAS

o Level 2: matrix-vector operations

𝒚 ≔ 𝑨𝒙 + 𝒚
where 𝑨 ∈ ℝ𝒏×𝒏 and 𝒙, 𝒚 ∈ ℝ𝒏

o 𝒏×𝒏 = 𝒏𝟐 data reads for the matrix
o 𝟑𝒏 for reading 𝑥, 𝑦 from memory and writing 𝑦 to memory
o 𝒎 = 𝒏𝟐 + 𝟑𝒏 ≈ 𝒏𝟐 memory operations
o 𝒇 = 𝟐 𝒏×𝒏 = 𝟐𝒏𝟐 floating point operations
o 𝒒 ≈ 𝟐𝒏𝟐/𝒏𝟐 ≈ 𝟐

Performance of BLAS

o Level 2: matrix-vector operations

𝒚 ≔ 𝑨𝒙 + 𝒚
where 𝑨 ∈ ℝ𝒏×𝒏 and 𝒙, 𝒚 ∈ ℝ𝒏

o 𝒏×𝒏 = 𝒏𝟐 data reads for the matrix
o 𝟑𝒏 for reading 𝑥, 𝑦 from memory and writing 𝑦 to memory
o 𝒎 = 𝒏𝟐 + 𝟑𝒏 ≈ 𝒏𝟐 memory operations
o 𝒇 = 𝟐 𝒏×𝒏 = 𝟐𝒏𝟐 floating point operations
o 𝒒 ≈ 𝟐𝒏𝟐/𝒏𝟐 ≈ 𝟐
o Level 2 operations have slightly better 𝑞 value
o slightly more efficient than Level 1

Performance of BLAS

o Level 3: matrix-matrix operations

𝑪 ≔ 𝑨 , 𝑩 + 𝑪
where 𝑨,𝑩, 𝑪 ∈ ℝ𝒏×𝒏

o 𝒏𝟐 reads for A
o 𝒏𝟐 reads for B
o 𝟐𝒏𝟐 memory operations for C (read and write)
o 𝒎 = 𝟒𝒏𝟐 memory operations

Performance of BLAS

o Level 3: matrix-matrix operations

𝑪 ≔ 𝑨 , 𝑩 + 𝑪
where 𝑨,𝑩, 𝑪 ∈ ℝ𝒏×𝒏

o 𝒏𝟐 reads for A
o 𝒏𝟐 reads for B
o 𝟐𝒏𝟐 memory operations for C (read and write)
o 𝒎 = 𝟒𝒏𝟐 memory operations
o 𝒇 = 𝟐𝒏𝟑 floating point operations (recall previous slides)

Performance of BLAS

o Level 3: matrix-matrix operations

𝑪 ≔ 𝑨 $ 𝑩 + 𝑪
where 𝑨,𝑩, 𝑪 ∈ ℝ𝒏×𝒏

o 𝒏𝟐 reads for A
o 𝒏𝟐 reads for B
o 𝟐𝒏𝟐 memory operations for C (read and write)
o 𝒎 = 𝟒𝒏𝟐 memory operations
o 𝒇 = 𝟐𝒏𝟑 floating point operations (recall previous slides)

o 𝒒 = 𝟐𝒏𝟑

𝟒𝒏𝟐
= 𝒏

𝟐
o Level 3 is most efficient

Performance of BLAS

o Level 3: matrix-matrix operations

𝑪 ≔ 𝑨 $ 𝑩 + 𝑪
where 𝑨,𝑩, 𝑪 ∈ ℝ𝒏×𝒏

o 𝒏𝟐 reads for A
o 𝒏𝟐 reads for B
o 𝟐𝒏𝟐 memory operations for C (read and write)
o 𝒎 = 𝟒𝒏𝟐 memory operations
o 𝒇 = 𝟐𝒏𝟑 floating point operations (recall previous slides)

o 𝒒 = 𝟐𝒏𝟑

𝟒𝒏𝟐
= 𝒏

𝟐
o (we can further optimize MMM, as discussed previously)

Performance of BLAS

o BLAS level 3 is most efficient

Table taken from James W.
Demmel. Applied Numerical
Linear Algebra. SIAM, 1997.

Performance of BLAS

o BLAS level 3 is most efficient
o If we have an optimized MMM subroutine, we can

improve the performance of our computations by
reordering our algorithm in terms of MMM versus
saxpy or matrix-vector mult

Table taken from James W.
Demmel. Applied Numerical
Linear Algebra. SIAM, 1997.

Optimized subroutines vary from
machine to machine
o Architecture affects what is algorithm will achieve better

memory behavior
o Parameters to consider: blocking factors, loop unrolling

depths, software pipelining strategies, loop ordering,
register allocations, instruction scheduling

o Example:
o Cache size and how many levels of cache impact the

ideal matrix block sizes and shapes to use
o Instructions are also cached -- we cannot unroll all the

loops if cache size is too limited

Automatically Tuned Linear Algebra
Software

Automatic generation of highly
efficient Level 3 BLAS
o Code generator to automatically create optimized on-

chip, cache contained, (i.e., in Level 1 (L1) cache) matrix
multiply
o Timings determine the correct blocking and loop

unrolling factors for on-chip matrix multiply
o Isolate the machine-specific features of the operation to

several routines that deal with on-chip matrix multiply
o The rest of the code is fixed across architectures
o Handles looping, blocking, etc. to build complete

matrix-matrix multiply from the on-chip multiply

Automatically generated on-chip
matrix multiply
o 𝑪 ← 𝑨𝑻𝑩 + 𝑪
o Chosen as opposed to 𝐶 ← 𝐴𝐵 + 𝐶
o generates largest (𝑓𝑙𝑜𝑝𝑠)/(𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠𝑒𝑠) ratio when

the loops are written with no unrolling
o Matrix A brought into cache, loops over columns of B

(arbitrary choice of which matrix to bring in and loop
over the other)

Automatically generated on-chip
matrix multiply
o Factors considered for maximal cache reuse:
o All of A must fit into cache, and at least two columns of

B and 1 cache line of C

Automatically generated on-chip
matrix multiply
o Factors considered for maximal cache reuse:
o Instruction cache overflow – Not all of the loops can

be unrolled; on-chip multiply instructions must fit L1
cache

Automatically generated on-chip
matrix multiply
o Factors considered for maximal cache reuse:
o Floating point instruction ordering

o Most modern computers have pipelined floating point
units

o Results of an operation may not be available until X cycles
later, where X is number of stages in floating point pipe

o “Latency hiding” – separate multiply and add; issue
unrelated instructions between them

Automatically generated on-chip
matrix multiply
o Factors considered for maximal cache reuse:
o Loop overhead

o Remove loop overhead by loop unrolling
o If order of instructions must not change, unroll the loop

over the dimension common to A and B (i.e. unroll the “k”
loop)

o Unrolling over other dimensions changes order of
instructions and memory access patterns

Automatically generated on-chip
matrix multiply
o Factors considered for maximal cache reuse:
o Exposure of possible parallelism

o Many modern architectures have multiple floating point
units

o For perfect parallel speedup: memory fetch should also
be able to operate in parallel (hardware limitation)

o Compiler must recognize opportunities for parallelization
o Unroll “i" and/or “j” loops; choose correct register allocations to

avoid false dependencies

Automatically generated on-chip
matrix multiply
o Factors considered for maximal cache reuse:
o The number of outstanding cache misses the

hardware can handle before execution is blocked
o maximal number of cache misses should be issued each

cycle, until all memory is in cache or used
o Use “i” and “j” loop unrolling to control cache-hit ratio

How does ATLAS automatically
generate the code?
o Code generator coupled with a timer routine to take

initial information
o Tries different strategies for loop unrolling and latency

hiding
o Chooses the case which demonstrated the best

performance
o User may enter size of L1 cache, or program tries to

calculate it

Performance of ATLAS

o ”Has been able to match or exceed the performance of
the vendor supplied version of matrix multiply in almost
every case”

o ATLAS is used by:
o MATLAB (v6.0 or higher)
o Octave

Which BLAS are used by NumPy Python
module?

Check out the output of
numpy.show_config()

Summary

o BLAS have been defined for commonly used linear
algebra operations

o Vendors implement optimized BLAS specific to their
machine architecture

o ATLAS automatically tunes the on-chip matrix multiply
o Reordering of your program to use the BLAS, especially

BLAS Level 3 (MMM), optimizes the performance of your
code

o Try it yourself!
o Compare the performance of an algorithm that uses

self-written MMM function versus one that uses what
numpy offers

