

Computing Architectures and Algorithms

Linear Algebra Software Libraries

Recap

- Previous discussion showed how careful implementation of an algorithm can improve memory/cache behavior of MMM
- $\circ~$ Some techniques that were explored:
 - o Choosing the better loop order
 - o Blocking
 - General ideas
 - If matrix is large, cache cannot hold all the matrix operands -> cache misses are costly
 - Shorter strides can be advantageous in traversing elements of a matrix

Recap

- o Parameters to consider for optimization
 - o Column-major vs row-major
 - o Size of cache
 - Size of matrices
 - o (MMM with blocking) Size of blocks

$$o \quad N = n \sqrt{\frac{3}{M}}$$

• Selection of *N* that optimizes our algorithm depends on size of matrix *n* and size of cache *M*

Basic Linear Algebra Subroutines (BLAS)

Standardizing common operations can be cost-effective

- Operations like MMM are so common
- Manufacturers have standardized these common operations as the Basic Linear Algebra Subroutines (BLAS)
- Can achieve portability and efficiency for wide range of kernel scientific computations

The BLAS (http://www.netlib.org/blas/)

- High quality "building block" routines for basic vector and matrix operations
 - o Level 1: scalar, vector, & vector-vector operations
 - Level 2: matrix-vector operations
 - o Level 3: matrix-matrix operations
- Provides specification of the semantics and syntax for the operations
 - Computer vendors or software vendors provide implementations of BLAS that are optimized for specific machine architectures

The BLAS (http://www.netlib.org/blas/)

- Platform independent and free library alternatives are available:
 - <u>ATLAS</u> automatically generates an optimized BLAS library for a given architecture
 - OpenBLAS (a fork of GotoBLAS) is a free open-source alternative to the vendor BLAS implementations
 - Packaged on many end-user Linux distributions such as Ubuntu
 - Readily available for users who perform calculations on their personal computers
 - Decent speed and fairly competitive with Vendor BLAS

• Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation ("sum of αx plus y"):

 $y \coloneqq \alpha x + y$ where $\alpha \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$

Example values when n = 2: $\alpha = 3$, $y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $x = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

• Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation ("sum of αx plus y"):

 $y \coloneqq \alpha x + y$

Let's compute the number of memory operations (read or write to/from memory)

**Assume an optimized/efficient algorithm is being used

• Level 1: scalar, vector, & vector-vector operations

$$y \coloneqq \alpha x + y$$

Load α
into
register
once

• Level 1: scalar, vector, & vector-vector operations

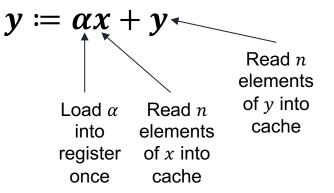
Consider the saxpy operation ("sum of αx plus y"):

J

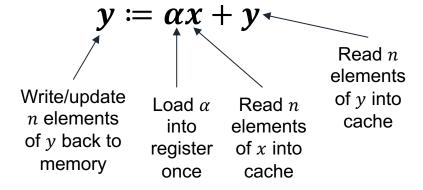
$$y \coloneqq \alpha x + y$$

Load α Read n
into elements
register of x into
once cache

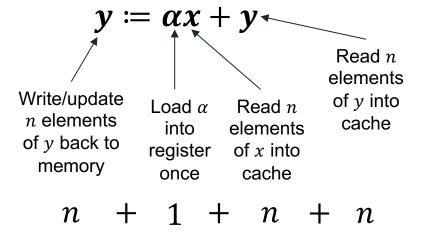
• Level 1: scalar, vector, & vector-vector operations



• Level 1: scalar, vector, & vector-vector operations

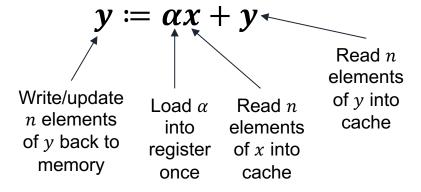


• Level 1: scalar, vector, & vector-vector operations



• Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation ("sum of αx plus y"):



3n + 1 memory operations

• Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation ("sum of αx plus y"):

$$y \coloneqq \alpha x + y$$

2n floating point operations

3n + 1 memory operations

• Level 1: scalar, vector, & vector-vector operations

Consider the saxpy operation ("sum of αx plus y"):

 $y \coloneqq \alpha x + y$

Approximately 3 memory operations for every 2 floating point operation

$$q = \frac{f}{m} = \frac{2n}{3n+1}$$
$$q \approx \frac{2}{3}$$

• Level 2: matrix-vector operations

 $y \coloneqq Ax + y$ where $A \in \mathbb{R}^{n imes n}$ and $x, y \in \mathbb{R}^{n}$

n×*n* = *n*² data reads for the matrix
3*n* for reading *x*, *y* from memory and writing *y* to memory *m* = *n*² + 3*n* ≈ *n*² memory operations

Level 2: matrix-vector operations

 $y \coloneqq Ax + y$ where $A \in \mathbb{R}^{n imes n}$ and $x, y \in \mathbb{R}^{n}$

n×*n* = *n*² data reads for the matrix
3*n* for reading *x*, *y* from memory and writing *y* to memory *m* = *n*² + 3*n* ≈ *n*² memory operations *f* = 2(*n*×*n*) = 2*n*² floating point operations

Level 2: matrix-vector operations

 $y \coloneqq Ax + y$ where $A \in \mathbb{R}^{n imes n}$ and $x, y \in \mathbb{R}^{n}$

• $n \times n = n^2$ data reads for the matrix • 3n for reading x, y from memory and writing y to memory • $m = n^2 + 3n \approx n^2$ memory operations • $f = 2(n \times n) = 2n^2$ floating point operations • $q \approx 2n^2/n^2 \approx 2$

Level 2: matrix-vector operations

 $y\coloneqq Ax+y$ where $A\in \mathbb{R}^{n imes n}$ and $x,y\in \mathbb{R}^n$

n×*n* = *n*² data reads for the matrix
3*n* for reading *x*, *y* from memory and writing *y* to memory *m* = *n*² + 3*n* ≈ *n*² memory operations *f* = 2(*n*×*n*) = 2*n*² floating point operations *q* ≈ 2*n*²/*n*² ≈ 2
Level 2 operations have slightly better *q* value
slightly more efficient than Level 1

Level 3: matrix-matrix operations

 $\mathbf{C} \coloneqq \mathbf{A} \cdot \mathbf{B} + \mathbf{C}$

where $A, B, C \in \mathbb{R}^{n \times n}$

- \circ n^2 reads for A
- \circ n^2 reads for B
- $\circ 2n^2$ memory operations for C (read and write)
- $\circ m = 4n^2$ memory operations

Level 3: matrix-matrix operations

 $\mathbf{C} \coloneqq \mathbf{A} \cdot \mathbf{B} + \mathbf{C}$

where $A, B, C \in \mathbb{R}^{n \times n}$

- \circ n^2 reads for A
- \circ n^2 reads for B
- $\circ 2n^2$ memory operations for C (read and write)
- $\circ m = 4n^2$ memory operations
- $f = 2n^3$ floating point operations (recall previous slides)

Level 3: matrix-matrix operations

 $C \coloneqq A \cdot B + C$ where $A, B, C \in \mathbb{R}^{n \times n}$

- \circ n^2 reads for A
- \circ n^2 reads for B
- \circ 2 n^2 memory operations for C (read and write)
- $m = 4n^2$ memory operations
- $f = 2n^3$ floating point operations (recall previous slides)

$$q = \frac{2n^3}{4n^2} = \frac{n}{2}$$

Level 3 is most efficient

Level 3: matrix-matrix operations

 $C \coloneqq A \cdot B + C$ where $A, B, C \in \mathbb{R}^{n \times n}$

- \circ n^2 reads for A
- \circ n^2 reads for B
- \circ 2 n^2 memory operations for C (read and write)
- $m = 4n^2$ memory operations
- $f = 2n^3$ floating point operations (recall previous slides)

$$q = \frac{2n^3}{4n^2} = \frac{n}{2}$$

• (we can further optimize MMM, as discussed previously)

Operation	Definition	f	m	q = f/m
saxpy (BLAS1)	$y = \alpha \cdot x + y \text{ or}$ $y_i = \alpha x_i + y_i$ $i = 1, \dots, n$	2n	3n + 1	2/3
Matrix-vector mult (BLAS2)	$y = A \cdot x + y \text{ or}$ $y_i = \sum_{j=1}^n a_{ij} x_j + y_i$ $i = 1, \dots, n$	$2n^2$	$n^2 + 3n$	2
Matrix-matrix mult (BLAS3)	$C = A \cdot B + C \text{ or}$ $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{jk} + c_{ij}$ $i, j = 1, \dots, n$	$2n^3$	$4n^2$	n/2

Table taken from James W. Demmel. *Applied Numerical Linear Algebra*. SIAM, 1997.

o BLAS level 3 is most efficient

Operation	Definition	f	m	q = f/m
saxpy (BLAS1)	$y = \alpha \cdot x + y \text{ or}$ $y_i = \alpha x_i + y_i$ $i = 1, \dots, n$	2n	3n + 1	2/3
Matrix-vector mult (BLAS2)	$y = A \cdot x + y \text{ or}$ $y_i = \sum_{j=1}^n a_{ij} x_j + y_i$ $i = 1, \dots, n$	$2n^2$	$n^2 + 3n$	2
Matrix-matrix mult (BLAS3)	$C = A \cdot B + C \text{ or}$ $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{jk} + c_{ij}$ $i, j = 1, \dots, n$	$2n^3$	$4n^2$	n/2

Table taken from James W. Demmel. *Applied Numerical Linear Algebra.* SIAM, 1997.

BLAS level 3 is most efficient

 If we have an optimized MMM subroutine, we can improve the performance of our computations by reordering our algorithm in terms of MMM versus saxpy or matrix-vector mult

Optimized subroutines vary from machine to machine

- Architecture affects what is algorithm will achieve better memory behavior
- Parameters to consider: blocking factors, loop unrolling depths, software pipelining strategies, loop ordering, register allocations, instruction scheduling
- \circ Example:
 - Cache size and how many levels of cache impact the ideal matrix block sizes and shapes to use
 - Instructions are also cached -- we cannot unroll all the loops if cache size is too limited

Automatically Tuned Linear Algebra Software

Automatic generation of highly efficient Level 3 BLAS

- Code generator to automatically create optimized onchip, cache contained, (i.e., in Level 1 (L1) cache) matrix multiply
 - Timings determine the correct blocking and loop unrolling factors for on-chip matrix multiply
- Isolate the machine-specific features of the operation to several routines that deal with on-chip matrix multiply
 - The rest of the code is fixed across architectures
 - Handles looping, blocking, etc. to build complete matrix-matrix multiply from the on-chip multiply

 $\circ \quad \boldsymbol{C} \leftarrow \boldsymbol{A}^T \boldsymbol{B} + \boldsymbol{C}$

◦ Chosen as opposed to $C \leftarrow AB + C$

- generates largest (*flops*)/(*cache misses*) ratio when the loops are written with no unrolling
- Matrix A brought into cache, loops over columns of B (arbitrary choice of which matrix to bring in and loop over the other)

 Factors considered for maximal cache reuse:
 All of A must fit into cache, and at least two columns of B and 1 cache line of C

 Factors considered for maximal cache reuse:
 Instruction cache overflow – Not all of the loops can be unrolled; on-chip multiply instructions must fit L1 cache

- Factors considered for maximal cache reuse:
 - o Floating point instruction ordering
 - Most modern computers have pipelined floating point units
 - Results of an operation may not be available until X cycles later, where X is number of stages in floating point pipe
 - "Latency hiding" separate multiply and add; issue unrelated instructions between them

- Factors considered for maximal cache reuse:
 - o Loop overhead
 - Remove loop overhead by loop unrolling
 - If order of instructions must not change, unroll the loop over the dimension common to A and B (i.e. unroll the "k" loop)
 - Unrolling over other dimensions changes order of instructions and memory access patterns

- Factors considered for maximal cache reuse:
 - o Exposure of possible parallelism
 - Many modern architectures have multiple floating point units
 - For perfect parallel speedup: memory fetch should also be able to operate in parallel (hardware limitation)
 - o Compiler must recognize opportunities for parallelization
 - Unroll "i" and/or "j" loops; choose correct register allocations to avoid false dependencies

- Factors considered for maximal cache reuse:
 - The number of outstanding cache misses the hardware can handle before execution is blocked
 - maximal number of cache misses should be issued each cycle, until all memory is in cache or used
 - o Use "i" and "j" loop unrolling to control cache-hit ratio

How does ATLAS automatically generate the code?

- Code generator coupled with a timer routine to take initial information
- Tries different strategies for loop unrolling and latency hiding
- Chooses the case which demonstrated the best performance
- User may enter size of L1 cache, or program tries to calculate it

- "Has been able to match or exceed the performance of the vendor supplied version of matrix multiply in almost every case"
- $\circ~$ ATLAS is used by:
 - MATLAB (v6.0 or higher)
 - o Octave

Which BLAS are used by NumPy Python module?

Check out the output of numpy.show_config()

Summary

- BLAS have been defined for commonly used linear algebra operations
- Vendors implement optimized BLAS specific to their machine architecture
- o ATLAS automatically tunes the on-chip matrix multiply
- Reordering of your program to use the BLAS, especially BLAS Level 3 (MMM), optimizes the performance of your code
 - Try it yourself!
 - Compare the performance of an algorithm that uses self-written MMM function versus one that uses what numpy offers