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Recap

o Previous discussion showed how careful implementation 
of an algorithm can improve memory/cache behavior of 
MMM

o Some techniques that were explored:
o Choosing the better loop order
o Blocking

o General ideas
o If matrix is large, cache cannot hold all the matrix 

operands -> cache misses are costly
o Shorter strides can be advantageous in traversing 

elements of a matrix



Recap

o Parameters to consider for optimization
o Column-major vs row-major
o Size of cache
o Size of matrices
o (MMM with blocking) Size of blocks

o 𝑁 = 𝒏 𝟑
𝑴

o Selection of 𝑁 that optimizes our algorithm depends on 
size of matrix 𝑛 and size of cache 𝑀



Basic Linear Algebra Subroutines (BLAS)



Standardizing common operations can 
be cost-effective
o Operations like MMM are so common
o Manufacturers have standardized these common 

operations as the Basic Linear Algebra Subroutines 
(BLAS)

o Can achieve portability and efficiency for wide range of 
kernel scientific computations



The BLAS (http://www.netlib.org/blas/)

o High quality “building block” routines for basic vector 
and matrix operations
o Level 1: scalar, vector, & vector-vector operations
o Level 2: matrix-vector operations
o Level 3: matrix-matrix operations

o Provides specification of the semantics and syntax for 
the operations

o Computer vendors or software vendors provide 
implementations of BLAS that are optimized for specific 
machine architectures

http://www.netlib.org/blas/


The BLAS (http://www.netlib.org/blas/)

o Platform independent and free library alternatives are 
available:
o ATLAS automatically generates an optimized BLAS 

library for a given architecture
o OpenBLAS (a fork of GotoBLAS) is a free open-source 

alternative to the vendor BLAS implementations
o Packaged on many end-user Linux distributions such as 

Ubuntu
o Readily available for users who perform calculations on 

their personal computers
o Decent speed and fairly competitive with Vendor BLAS

http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/
http://www.openblas.net/


Performance of BLAS

o Level 1:  scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚
where 𝜶 ∈ ℝ and 𝒙, 𝒚 ∈ ℝ𝒏

Example values when 𝑛 = 2: 
𝛼 = 3, 𝑦 = 1

2 , 𝑥 = 3
3



Performance of BLAS

o Level 1:  scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

Let’s compute the number of memory 
operations (read or write to/from 

memory)

**Assume an optimized/efficient 
algorithm is being used
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Performance of BLAS
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Performance of BLAS

o Level 1:  scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚

3𝑛 + 1 memory operations

2𝑛 floating point operations



Performance of BLAS

o Level 1:  scalar, vector, & vector-vector operations

Consider the saxpy operation (“sum of 𝜶𝒙 plus 𝒚”):

𝒚 ≔ 𝜶𝒙 + 𝒚
Approximately 3 memory operations for 

every 2 floating point operation

𝑞 =
𝑓
𝑚
=

2𝑛
3𝑛 + 1

𝒒 ≈
𝟐
𝟑



Performance of BLAS

o Level 2:  matrix-vector operations

𝒚 ≔ 𝑨𝒙 + 𝒚
where 𝑨 ∈ ℝ𝒏×𝒏 and 𝒙, 𝒚 ∈ ℝ𝒏

o 𝒏×𝒏 = 𝒏𝟐 data reads for the matrix
o 𝟑𝒏 for reading 𝑥, 𝑦 from memory and writing 𝑦 to memory
o 𝒎 = 𝒏𝟐 + 𝟑𝒏 ≈ 𝒏𝟐 memory operations



Performance of BLAS

o Level 2:  matrix-vector operations

𝒚 ≔ 𝑨𝒙 + 𝒚
where 𝑨 ∈ ℝ𝒏×𝒏 and 𝒙, 𝒚 ∈ ℝ𝒏

o 𝒏×𝒏 = 𝒏𝟐 data reads for the matrix
o 𝟑𝒏 for reading 𝑥, 𝑦 from memory and writing 𝑦 to memory
o 𝒎 = 𝒏𝟐 + 𝟑𝒏 ≈ 𝒏𝟐 memory operations
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Performance of BLAS

o Level 2:  matrix-vector operations

𝒚 ≔ 𝑨𝒙 + 𝒚
where 𝑨 ∈ ℝ𝒏×𝒏 and 𝒙, 𝒚 ∈ ℝ𝒏

o 𝒏×𝒏 = 𝒏𝟐 data reads for the matrix
o 𝟑𝒏 for reading 𝑥, 𝑦 from memory and writing 𝑦 to memory
o 𝒎 = 𝒏𝟐 + 𝟑𝒏 ≈ 𝒏𝟐 memory operations
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o 𝒒 ≈ 𝟐𝒏𝟐/𝒏𝟐 ≈ 𝟐
o Level 2 operations have slightly better 𝑞 value
o slightly more efficient than Level 1



Performance of BLAS

o Level 3:  matrix-matrix operations

𝑪 ≔ 𝑨 , 𝑩 + 𝑪
where 𝑨,𝑩, 𝑪 ∈ ℝ𝒏×𝒏

o 𝒏𝟐 reads for A
o 𝒏𝟐 reads for B
o 𝟐𝒏𝟐 memory operations for C (read and write)
o 𝒎 = 𝟒𝒏𝟐 memory operations
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Performance of BLAS

o Level 3:  matrix-matrix operations

𝑪 ≔ 𝑨 $ 𝑩 + 𝑪
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𝟒𝒏𝟐
= 𝒏

𝟐
o Level 3 is most efficient



Performance of BLAS

o Level 3:  matrix-matrix operations

𝑪 ≔ 𝑨 $ 𝑩 + 𝑪
where 𝑨,𝑩, 𝑪 ∈ ℝ𝒏×𝒏

o 𝒏𝟐 reads for A
o 𝒏𝟐 reads for B
o 𝟐𝒏𝟐 memory operations for C (read and write)
o 𝒎 = 𝟒𝒏𝟐 memory operations
o 𝒇 = 𝟐𝒏𝟑 floating point operations (recall previous slides)

o 𝒒 = 𝟐𝒏𝟑

𝟒𝒏𝟐
= 𝒏

𝟐
o (we can further optimize MMM, as discussed previously)



Performance of BLAS

o BLAS level 3 is most efficient

Table taken from James W. 
Demmel. Applied Numerical 
Linear Algebra. SIAM, 1997.



Performance of BLAS

o BLAS level 3 is most efficient
o If we have an optimized MMM subroutine, we can 

improve the performance of our computations by 
reordering our algorithm in terms of MMM versus 
saxpy or matrix-vector mult

Table taken from James W. 
Demmel. Applied Numerical 
Linear Algebra. SIAM, 1997.



Optimized subroutines vary from 
machine to machine
o Architecture affects what is algorithm will achieve better 

memory behavior
o Parameters to consider: blocking factors, loop unrolling 

depths, software pipelining strategies, loop ordering, 
register allocations, instruction scheduling

o Example:
o Cache size and how many levels of cache impact the 

ideal matrix block sizes and shapes to use
o Instructions are also cached -- we cannot unroll all the 

loops if cache size is too limited



Automatically Tuned Linear Algebra 
Software



Automatic generation of highly 
efficient Level 3 BLAS
o Code generator to automatically create optimized on-

chip, cache contained, (i.e., in Level 1 (L1) cache) matrix 
multiply
o Timings determine the correct blocking and loop 

unrolling factors for on-chip matrix multiply
o Isolate the machine-specific features of the operation to 

several routines that deal with on-chip matrix multiply
o The rest of the code is fixed across architectures
o Handles looping, blocking, etc. to build complete

matrix-matrix multiply from the on-chip multiply



Automatically generated on-chip 
matrix multiply
o 𝑪 ← 𝑨𝑻𝑩 + 𝑪
o Chosen as opposed to 𝐶 ← 𝐴𝐵 + 𝐶
o generates largest (𝑓𝑙𝑜𝑝𝑠)/(𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠𝑒𝑠) ratio when 

the loops are written with no unrolling
o Matrix A brought into cache, loops over columns of B 

(arbitrary choice of which matrix to bring in and loop 
over the other)



Automatically generated on-chip 
matrix multiply
o Factors considered for maximal cache reuse:
o All of A must fit into cache, and at least two columns of 

B and 1 cache line of C



Automatically generated on-chip 
matrix multiply
o Factors considered for maximal cache reuse:
o Instruction cache overflow – Not all of the loops can 

be unrolled; on-chip multiply instructions must fit L1 
cache



Automatically generated on-chip 
matrix multiply
o Factors considered for maximal cache reuse:
o Floating point instruction ordering

o Most modern computers have pipelined floating point 
units

o Results of an operation may not be available until X cycles 
later, where X is number of stages in floating point pipe

o “Latency hiding” – separate multiply and add; issue 
unrelated instructions between them



Automatically generated on-chip 
matrix multiply
o Factors considered for maximal cache reuse:
o Loop overhead

o Remove loop overhead by loop unrolling
o If order of instructions must not change, unroll the loop 

over the dimension common to A and B (i.e. unroll the “k”
loop)

o Unrolling over other dimensions changes order of
instructions and memory access patterns



Automatically generated on-chip 
matrix multiply
o Factors considered for maximal cache reuse:
o Exposure of possible parallelism

o Many modern architectures have multiple floating point
units

o For perfect parallel speedup: memory fetch should also 
be able to operate in parallel (hardware limitation)

o Compiler must recognize opportunities for parallelization
o Unroll “i" and/or “j” loops; choose correct register allocations to 

avoid false dependencies



Automatically generated on-chip 
matrix multiply
o Factors considered for maximal cache reuse:
o The number of outstanding cache misses the 

hardware can handle before execution is blocked
o maximal number of cache misses should be issued each 

cycle, until all memory is in cache or used
o Use “i” and “j” loop unrolling to control cache-hit ratio



How does ATLAS automatically 
generate the code?
o Code generator coupled with a timer routine to take 

initial information
o Tries different strategies for loop unrolling and latency 

hiding
o Chooses the case which demonstrated the best 

performance
o User may enter size of L1 cache, or program tries to 

calculate it



Performance of ATLAS

o ”Has been able to match or exceed the performance of 
the vendor supplied version of matrix multiply in almost 
every case”

o ATLAS is used by:
o MATLAB (v6.0 or higher)
o Octave



Which BLAS are used by NumPy Python 
module?



Check out the output of 
numpy.show_config()



Summary

o BLAS have been defined for commonly used linear 
algebra operations

o Vendors implement optimized BLAS specific to their 
machine architecture

o ATLAS automatically tunes the on-chip matrix multiply
o Reordering of your program to use the BLAS, especially

BLAS Level 3 (MMM), optimizes the performance of your 
code

o Try it yourself!
o Compare the performance of an algorithm that uses

self-written MMM function versus one that uses what 
numpy offers


