CoE 163

Computing Architectures and Algorithms

O1a: Algorithms Review

REMEMBER EEE 121?

Data structures and
algorithms are key in solving
any computer engineering
problem.

Knowledge of these basic
concepts enable you to solve
large real-world problems.

BASIC DATA
STRUCTURES

Basic
Numbers
Strings
Sets
Linear
Arrays, linked lists
Stacks, queues
Graph
Adjacency matrix
Adjacency list
Disjoint set

BASIC DATA
STRUCTURES

o Trees, heaps
o Binary tree (AVL, red-black)
o String trees (trie)

o Geometry

o Point pairs

o Polygon list

DATA STRUCTURES: LINEAR

Array: elements of usually same type arranged linearly

A B C D E

Linked list: a loosely-connected array

O - -0 <

DATA STRUCTURES: LINEAR

Stack: last in, first out; single-ended array
founs - CIRCICINEN
out &—— I

Queue: first in, first out; double-ended array

e c > -

DATA STRUCTURES:
LINEAR

o Arrays are useful for fixed and
arranged things
AA battery chargers
Piano keys
o Linked lists are useful for things
where middle elements can change
Clinic appointments with
cancellations
o Word editing (letter
insertion/deletion)

DATA STRUCTURES:
LINEAR

o Stacks are useful for things that
need stacking - usually vertical
o Box stacking in warehouses
o Tetris
o Queues are useful for things that fall
in line - usually horizontal
o Queueing systems in fast food
o Groceries sorted by expiry
date
o A stack and a queue in one is called
a deque (double-ended queue)

DATA STRUCTURES: GRAPH

Adjacency matrix: 2D array with indices as the two nodes and
value the weight or interconnection flag

destination
node0 nodet node?2 e Rows correspond to origin

node0 | 0 node and columns the
destination node
o (Can be reversed
depending on how you
0 code the graph
o Anundirected graph
can be represented as
a symmetric matrix
e Ifan element along the
diagonal is nonzero, there is an
edge to the element itself

origin

node 1 1

node 2

DATA STRUCTURES: GRAPH

Adjacency list: Array of variable-length arrays listing neighbors of

a node
neighbors e Saves space as it does
node0 | 2 not allocate a vxv matrix (v
o the number of nodes)
T node 1 0 2
[=

e An edge to a node itself
sz | 0 can be represented by
listing itself in its
adjacency list

DATA STRUCTURES: GRAPH

Disjoint set: Array with indices as node labels and value denoting
which node is its parent

parent

node 0

2

node
node 1 node 2

0 -1

—@

This is actually a set data
structure, but usually
comes up in graphs
Disjoint sets do not have
cycles and have only one
parent

Traversal is recursive and
can be implemented
efficiently if paths are
compressed

DATA STRUCTURES:
GRAPH

o Adjacency matrices are useful for

dense and small graphs

“Flow Free” game

Adjacency lists are useful for sparse

and large graphs
Road networks

Disjoint sets are useful for
child-parent-like relationships
o Family trees

DATA STRUCTURES: TREE

Binary tree: Tree that has at most two children

e There are different kinds of
A C D E B binary trees
o AVL, red-black, splay...
e Balancing is important to
ensure efficient traversal and
mutation
e Implement as a graph, linked
“list”, or 1D array
o Linked “list” consists of
nodes, with each
tracking the left and
right subtrees
o 1D array arranged as
breadth-first traversal

DATA STRUCTURES: TREE

Heap: Tree that satisfies the heap property (parent root has
higher/lower value than children)

node

0 12 s 4 e Max heap has the

10 |4 |8 |2 |3 highest-valued node at
the root

e (Can be storedasa 1D
array the same as a binary
tree

e Balancing is important to
maintain the heap
property

DATA STRUCTURES: TREE

Trie (Prefix tree): Tree that locates specific keys within a set

A node is defined by its
parent prefix and its value
concatenated

Can be stored as a 1D
array with the suffix as
value

Children of leaf nodes
need to be represented
with a symbol to denote
end of trie

DATA STRUCTURES:
TREE

o Binary trees are useful for balanced
matching and searching
Parentheses matching
Heaps are useful for maintaining
order while mutating data
Senior citizen lane in groceries
Tries are useful for matching and
finding
o String searching

o/

...

a ¥y

N

BASIC ALGORITHMS

o Graph theory
Traversal and shortest paths
Minimum spanning tree
Problem solving paradigms
o Complete search and
recursion
Divide and conquer
Dynamic programming/greedy

BASIC ALGORITHMS

o Math and geometry
Probability and statistics
Plane/analytic/spherical
geometry

o String processing

String matching
Trees, tries, and arrays
Data processing
o Sorting
Filter and transformation

b/

...

a ¥y

N

ALGORITHMS: GRAPH
TRAVERSAL

Graph traversal: Search by visiting a node and its neighbors
systematically

Traversal order e Depth-first search (DFS): visit
e DFS: A-C-E-B-D the deepest part of a path,
e BFS: A-C-D-E-B then backtrack

o Uses a stack to track
nodes being visited
e Breadth-first search (BES): visit
by layer
o Uses a queue to track
nodes being visited
e Traversal can be modified to
determine shortest path
between two nodes

ALGORITHMS: SHORTEST PATH

Shortest path: Find path between two nodes that has the
minimum weight

Some shortest paths e Dikstra’s: visit and “relax”
e AtoD: costs 3 (A-D) edges to find
e AtoE: costs 5 (A-C-F) minimum-weighted path
o A priority queue can be
used to pick which
8_,” nodes to visit first
e Bellman-Ford: similar to

L f ii Dijkstra’s but works on

G) Q negative weights

> o Uses dynamic

4 programming to “relax’
6o

ALGORITHMS: MINIMUM
SPANNING TREE

Minimum spanning tree: Find set of edges that cumulatively
have the total minimum weight and still connects all nodes

Minimum edges needed e Kruskal: Sort edges from the
e With weights 1,2, 4,5 lowest weight and get those
8

on top if the two nodes are not
connected yet
e Prim: Select a random node
o T
with the lowest weight. Collect
V 'i edges from the resulting

o connected node and repeat
> choosing of edges among all
the connected nodes in such

and pick a connecting edge
4
ef kie fashion.

ALGORITHMS: PROBLEM
SOLVING

Complete search: lterate through all possibilities of a solution
systematically

Put queens on a grid where they do not
threaten each other

Put queens by row, taking care to
put them in separate columns

Check for threats at the diagonal and
backtrack to previous layout if there
are

Brute force: Create nested
loops or recursions to
explore all possibilities

A*: Explore nodes with the
lowest cost first

Graph traversal: Reform
problem into a graph
problem and traverse
through all possibilities

ALGORITHMS: PROBLEM
SOLVING

Divide and conquer: Recurse through a problem by splitting it
into n similar problems and consolidating the solutions

You have a cat of length a. Find two e Binary search on atree is
cats on a row of cats ordered from an example
shortest length that is a little longer e Bisection method is useful

and little shorter than yours.
e Use binary search to find the _
floor and ceiling lengths solution

in arriving at a numerical

row of cats

1 2 3 5 7 10 12

Your cat is of length 8
Go to segments 5-12, 5-7, 10-12

Closest lengths are 7 and 10 a

ALGORITHMS: PROBLEM
SOLVING

Dynamic programming: Prune complete search by observing
recursion leading to an optimal solution

Determine grouping of matrix chain Py TOQ-dOWﬂZ Recurse from
multiplications that will yield the smallest h fth
number of operations the ’[Qp and parts O t. e
e A:3x2 B:2x5,C:5x4; E=ABC solution for later rebuilds
e Group matrices like complete search A :
° Overwrite saved solution if it is ¢ Bottom U + Build up to
smaller the solution from base
until cases
A B C e Build order is important!
A lo a0 - e Solution configuration can

be recovered by saving
previous iterations

from
(o2}
o
N
o

ALGORITHMS: PROBLEM

SOLVING

Greedy: Get what is best at the moment

Buy two take one free promo! Find
the maximum discount you can get
given your basket items.
e (G0 to the counter with the
three most expensive items on
your basket every time

shopping basket

1 2 3 5 7 10 12

checkout

Saved 9!

Special case of dynamic
programming that satisfies
the greedy property
Although it does not work
all the time, it can yield
fast and slightly
suboptimal solutions
When in doubt, use
dynamic programming
instead

ALGORITHMS: MATH AND

GEOMETRY

Basic arithmetic: Remember elementary axioms, factors, etc.

Three friends share a garden - one
worked A hours and another worked
B hours to clean up the whole
garden. The third friend paid D
dollars. How much should A get?

B\ D
SA:(A—A+)

A+B
3 3

A, B, and C have equal shares. A and
B clean up their respective areas plus
extra time that they give up to clean
C’s area.

Radix/Base conversion
Numerical pattern finding
Fractions

Logarithms and
exponents

Prime numbers

Modular arithmetic
Euclidean algorithm

ALGORITHMS: MATH AND

GEOMETRY

Probability and statistics: Apply basic probability axioms and

combinatorics

Monty Hall problem - find the chance
of winning when you switch to
another door

doors

If you stayed with your original choice, it’s as
if you just opened that door straight away, so
the chance is 5.

The chance of switching is therefore %5.

Permutations and
combinations

Bayes’ theorem,
conditional probabilities
Binomial, Catalan,
Fibonacci numbers

ALGORITHMS: MATH AND

GEOMETRY

Geometry: Apply 2D and 3D geometry theorems and conjectures

Line and plane
intersections

Area, perimeter, volume
Convex hull

Point inside polygon

Be careful of numerical
errors when using
floating-point!

ALGORITHMS: STRINGS

String matching, processing, and manipulation

e Knuth-Morris-Pratt
algorithm

e String alignment

e Suffix trie, prefix tree,
arrays

ALGORITHMS: DATA
PROCESSING

Apply algorithms to sort, filter, and transform data

e Bubble, insertion,
selection sorts

e Priority queue

e Summation and
production

e Bit masking

e Character to ASCII value

TIPS

o Learn new algorithms and data

Oy,

o Be exposed to a lot of known . . .

CS problems
o Practice by trying out online
judges, solving some problems,
and getting used to input/output
formatting

a ¥y

N

CoE 163

Computing Architectures and Algorithms

O1a: Algorithms Review

