
CoE 163
Computing Architectures and Algorithms

01b: Problem Solving

PROBLEM SOLVING

2

Problem solving is an important
skill to master for us engineers.

Such skill needs knowledge and
mastery of a wide range of
known algorithms, data
structures, and classical
problems.

CONSIDER...

3

◦ Find shortest distance from
EEEI to CHK

◦ Find the first 100 prime
numbers

◦ Find shortest length of
rubber needed to enclose a
set of pins on a corkboard

SOLVING THE
PROBLEM

4

◦ How do we solve this problem
as humans?

◦ How do we translate our
solution into computer code?

◦ How do we decompose this
problem if it is too big?

◦ How do we make it fast enough
for our purposes?

PROBLEM
STRUCTURE

5

If we are lucky, our problem
needs only one algorithm and a
basic data structure to solve.

◦ Graph traversal
◦ Prime number sieve
◦ Convex hull

CONSIDER...

6

Given pick-up sticks with
coordinates of endpoints, find
whether a stick A is connected to
stick B in some way.

7

ARE A AND B CONNECTED?

A

B

8

ARE A AND B CONNECTED?
YES!

A

B

SOLVING...

9

Human solving is easy, but how
do we solve it on a computer?

Maybe do graph traversal. But
we haven’t checked which sticks
cross each other.

Seems like this consists of more
than one problem.

PROBLEM
DECOMPOSITION

10

Most real-life problems need
more than one algorithm to be
solved.

Problem decomposition is the
key. With knowledge of the basic
problems, anyone can solve a
larger problem consisting of
multiple components!

PROBLEM
DECOMPOSITION

11

◦ Check whether two sticks
cross

◦ Check whether said sticks
are connected

PROBLEM
DECOMPOSITION

12

◦ Geometry
◦ Line-line intersection

◦ Graph
◦ Graph traversal or

transitive closure

13

LINE INTERSECTION

P

Q

◦ Compute by solving a linear
system equation

◦ Handle special case if slope of
both lines are the same

14

GRAPH INTERCONNECTION

1

2

3

4

15

GRAPH INTERCONNECTION

1

2

3

4

16

GRAPH INTERCONNECTION

P

Q

◦ Create graph vertex for each line
◦ Connect two vertices if the lines

intersect
◦ Apply depth/breadth-first search to

check whether line A is reachable
from B

◦ Alternatively, use Warshall’s
Algorithm (dynamic programming)
to calculate whether a path exists
from A to B

SOLUTION EDGES

17

Consider edge cases - cases
deviating from the usual - when
formulating solutions.

◦ Same-sloped sticks

Check whether the problem has
certain limitations that do not
apply.

◦ Sticks do not self-intersect

SOLUTION
SPEED-UPS

18

Do this after solving when your
solution is too slow or does not
perform well with respect to the
specific application.

◦ Precreate graph
◦ Do not store line intersection

data, but use it immediately to
build the graph

◦ Use adjacency matrix/list

CONSIDER...

19

A tic-tac-toe game with infinite space
(not 3x3) is being played by two
players. Check who won given that a
k number of consecutive O/X marks
is needed for a player to win.

20

GAME MECHANICS

A

B

O O

O

X X X

X

● 2 players, 3 marks to win
● X starts the game
● X won!

PROBLEM
CONSIDERATIONS

21

◦ Space is infinite, so it’s not
feasible to save the whole
board into memory

◦ Still need to be able to track
the location of the markers
in some way

◦ Depends on the number of
consecutive marks needed

SOLVING...

22

Human solving is easy, but how
do we solve it on a computer?

Iterate through each occupied
cell and try to traverse a line
away from it.

But we cannot save the whole
board since space is infinite.

PROBLEM
DECOMPOSITION

23

◦ Have a general view of the
infinite board

◦ Check whether a player won
by looking at the markers

PROBLEM
DECOMPOSITION

24

◦ Data structure
◦ Use a hashmap to save

the coordinates
◦ Complete search

◦ Check whether a
marked cell is part of a
line with k elements

25

DATA STRUCTURE

◦ Save coordinates into a
hashmap

◦ Keys are coordinates and
values are the marks on the
board

O O

O

X X X

X

(-2, -2) -> o (-1, -2) -> o (0, -2) -> x (2, 2) -> x

(-2, 0) -> o (0, -1) -> x

(0, 0) -> x

(0, 0) (0, 2)

(-1, 0)

26

COMPLETE SEARCH

◦ Starting at (-2, -2), traverse downward
to check for same marker
◦ Once decided, traversal should

be downward or upward only
◦ Same for similar directions (left

to right, upper-left to lower-right,
etc.)

◦ If k consecutive and same markers
were found, flag the winner

◦ If after all the turns are processed and
no winning lines were found, flag it as
an ongoing game

O O

O

X X X

X

(0, 0) (0, 2)

(-1, 0)

SOLUTION EDGES

27

◦ Edge cases
◦ Ties

◦ Technically an illegal
game

◦ Needs to exhaust all
turns to find out

◦ Limitations
◦ Maximum number of

consecutive markers k and
turns to process

SOLUTION
SPEED-UPS

28

◦ Check only the part of the board
where something changed

◦ Use built-in data structure
◦ Implementing your own is

tedious!
◦ C++ map or Python dict

◦ Convert map to a graph?
◦ Extra information on node is

needed to perform correct
traversal

◦ Assemble map/graph while looping

TIPS

29

◦ Be exposed to a lot of known
CS problems, algorithms, and
data structures

◦ Take your time
◦ Don’t be scared to try or feel

defeated
◦ Feel free to get help (especially

online)

RESOURCES

30

◦ uHunt and CPx book for
practice solving of known CS
problems

◦ StackOverflow, Wikipedia,
GeeksforGeeks, and related
websites if you forgot how to
implement an algorithm

◦ EEE 121 materials

https://uhunt.onlinejudge.org
https://cpbook.net

CoE 163
Computing Architectures and Algorithms

01b: Problem Solving

