
CoE 164
Computing Platforms

02b: Rust Enums and Structures

2

DATA STRUCTURES

Aside from the primitive types,
Rust also has compound data
types, which can be constructed
using the primitive data types.

◦ struct
◦ enum

Exam
ple

3

A structure (struct) is a compound data type that groups multiple data
placed into fields. Each field has a name and data type separated by
commas.

We declare a struct using the struct keyword. Names are in CamelCase
by convention.

STRUCTURES

struct UserAcct {
 active: bool,
 username: String,
 sign_in_count: u64,
}

Exam
ple

4

We can instantiate a struct by writing the struct definition, but the data
types are replaced by the values that the struct should have.

STRUCTS: INITIALIZATION

let user_a = UserAcct {
 active: true,
 username: "abcxyz".to_string(),
 sign_in_count: 0,
};

Exam
ple

5

To get the value of a field of a struct, the dot notation is used. It is
possible to also mutate a field value via assignment.

STRUCTS: MEMBERSHIP

let user_a = UserAcct {
 active: true,
 username: "abcxyz".to_string(),
 sign_in_count: 0,
};

println!("sign-ins: {}", user_a.sign_in_count);

Exam
ple

6

It is not possible to pick certain fields of a struct to be mutable. The whole
struct should be marked as mutable if any of the fields should be editable.

STRUCTS: MUTABILITY

let mut user_a = UserAcct {
 active: true,
 username: "abcxyz".to_string(),
 sign_in_count: 0,
};

user_a.sign_in_count += 1;

Exam
ple

7

Functions can accept structs as arguments and return values.

STRUCTS: FUNCTIONS

fn is_active(user: &UserAcct) -> bool {
 user.active
}

fn build(username: String) -> UserAcct {
 UserAcct {
 active: false,
 username: username,
 sign_in_count: 0,
 }
}

Exam
ple

8

Variables with the same name can be assigned to fields of a struct with
the same name using the shorthand syntax during initialization.

STRUCTS: FUNCTIONS

fn build(username: String) -> UserAcct {
 UserAcct {
 active: false,
 username,
 sign_in_count: 0,
 }
}

Example

9

Data from one structure to another
can be copied using the dot
notation. However, the struct
update syntax can be used if only
selected fields will differ from the
origin struct.

Note that the last field containing
the origin struct should not have a
trailing comma.

STRUCTS: COPYING

let user_a = UserAcct {
 active: true,
 username:
"userA".to_string(),
 sign_in_count: 50,
};

let user_b = UserAcct {
 username:
"userB".to_string(),
 ..user_a
};

Example

10

Copying and moving data from one
struct to another, or even assigning
data to a struct, still follows the
ownership rules. Hence, there may
be instances where the fields of the
origin struct may not be usable due
to move.

STRUCTS: COPYING

let my_name =
"hello".to_string();

let user_c = UserAcct {

 active: true,

 username: my_name,

 sign_in_count: 50,

};

// Compile error below!
println!("{my_name}");

Exam
ple

11

A tuple struct can be created by writing the tuple definition after the
struct name. These are structs with unnamed fields with numbered
indices as their field names - or conversely - tuples that have names.

STRUCTS: TUPLES

struct RGBColor(i32, i32, i32);
struct HSVColor(i32, i32, i32);

let green = RGBColor(0, 255, 0);
println!("RGB({}, {}, {})" , green.0, green.1, green.2);

Exam
ple

12

A unit-like struct can be created by writing nothing after the struct
name. It is the same as a tuple struct with the empty or unit tuple.

This kind of struct is useful if we want a "class" that can have methods
but no kind of data stored in any of its instances.

STRUCTS: UNITS

struct SampleStruct;

let ss = SampleStruct;

Exam
ple

13

A method is a function that is bound to a specific instance of some
"object". Methods can be added to structs by writing the methods inside
an impl block. A struct can have multiple impl blocks spread across the
program.

Methods are called using the dot notation.

STRUCTS: METHODS

impl UserAcct {
 fn get_name(&self) -> &String {
 &self.username
 }
}

println("{}", user_a.get_name());

Example

14

The first parameter of a method
should always be the instance of
the struct given by self: &Self.
Most programmers will write &self
instead as shorthand.

self is almost always given as a
reference, but it is possible for the
method to take ownership of it.

STRUCTS: METHODS

impl UserAcct {
 fn get_name(&self) -> &String {
 &self.username
 }

 fn is_act(this: &Self) -> bool {
 this.active
 }

 fn add_signup(&mut self) {
 self.sign_in_count += 1
 }
}

Exam
ple

15

If a method should have parameters, those parameters are added after
the first parameter containing Self.

When calling a method, the first parameter in the call will be assigned to
the second parameter in the method declaration.

STRUCTS: METHODS

impl UserAcct {
 fn prefix_name(&self, title: String) -> String {
 title + &String::from(" ") + &self.username.to_string()
 }
}

println("{}", user_a.prefix_name(String::from("Mr.")));

Example

16

Functions bound to a struct whose
first parameter is not Self is an
associated function. Such
functions usually are constructors,
which are functions that create an
instance of that struct.

Associated functions are called by
writing the function name prefixed
with the name of the struct
separated by a double colon.

STRUCTS: ASSOCIATED FUNCTIONS

impl UserAcct {
 fn new() -> Self {
 Self {
 active: false,
 username: String::from(""),
 sign_in_count: 0,
 }
 }

 fn add(a: i64, b: i64) -> i64 {
 a + b
 }
}

let blank_acct = UserAcct::new();
let c = UserAcct::add(3, 5);

Exam
ple

17

An enumeration (enum) is a compound data type that can take on one
of its possibly many variants. Enums are usually used to force data to be
only from one of the selected choices.

ENUMERATIONS

enum UserType {
 SuperAdmin,
 Admin,
 User,
 Unknown,
}

Exam
ple

18

Enums can also hold some data in any of its variants, which can be
retrieved when the enum is of that variant.

With this example, we can think of each variant as a struct grouped under
a single name.

ENUMS: VARIANTS

enum UserType {
 SuperAdmin,
 Admin(bool, u16), // tuple struct
 User { chown: u16 }, // struct (with named fields)
 Unknown, // unit struct
}

Exam
ple

19

Enums can be assigned to variables by specifying one of its variants and
the data that they will hold. Two colons are used to separate the enum
and variant name.

ENUMS: VARIANTS

let admin_all = UserType::Admin(true, 0o777);
let read_only = UserType::User { chown: 0o444 };
let mut unknown_user = UserType::Unknown;

Exam
ple

20

Enums can also be bound to methods or associated functions through
impl blocks. These methods or functions apply to all variants of the
enum.

ENUMS: METHODS

impl UserType {
 fn is_acct(&self) -> bool {
 true
 }
}

let admin_type = UserType::Admin(true, 0o777);
blank_acct.is_acct();

21

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

02b: Rust Enums and Structures

