
CoE 164
Computing Platforms

04c: Rust Unit Testing

2

TESTS

Testing software code is an important
skill to make sure programs work as
expected by the programmer.

Rust provides has a basic built-in
capability for writing unit tests,
which are tests on a specific function
or module.

3

TESTS: ANATOMY

Rust follows the following three steps
in order when running a unit test:

◦ Set-up any needed data or
state

◦ Run the code to test
◦ Assert the expected results

Exam
ple

4

TESTS: BASICS

A test is written as a function annotated with the test attribute.

Several test functions can be grouped into a module which should be
annotated with the cfg(test) attribute.

#[cfg(test)]
mod tests {
 #[test]
 fn it_works() {
 let result = 2 + 2;
 assert_eq!(result, 4);
 }
}

5

TESTS: BASICS

A single test file can be run by first compiling the file using rustc with the
--test flag. An executable file will then be generated, which will be run in
a special "test mode" that shows the number of tests passed and failed,
and a list and details of each of the failed tests.

Exam
ple

6

ASSERT: MACRO

The assert! macro panics if the expression in its first parameter is false.
This is used to assert truth or correct behavior.

// Everything below will not panic
assert!(true);
assert!(2 + 2 == 4);
assert!(9 > 5);

// Everything below will panic
assert!(2 > 7);

Exam
ple

7

ASSERT MACRO: EQUALITY

The specific versions assert_eq! and assert_neq! assert whether
the value of the two parameters entered are equal or not, respectively.
These provide more details about test failure, such as the final values of
the two parameters.

let x = 3 + 5;

// Does not fail
assert_eq!(x, 8);
assert_ne!(x, 0);

// Fails
assert_eq!(x, 7);

Exam
ple

8

ASSERT MACRO: MESSAGES

The assert! macros can print custom messages when they fail. The
remaining arguments of the macros are passed to the format! macro.

// Will fail with a message
// Math failed or wrong assertion: 3 + 5 = 8
let x = 3 + 5;
assert_eq!(x, 7, "Math failed or wrong assertion: 3 + 5 = {}", x);

Exam
ple

9

ASSERT: PANIC

The should_panic attribute should be added to a test function if the
code inside it should panic.

Note that any kind of panic will lead to a test pass.

#[cfg(test)]
mod tests {
 #[test]
 #[should_panic]
 fn it_panics() {
 panic!("Hi!");
 }
}

Exam
ple

10

ASSERT: PANIC

The should_panic attribute accepts an expected parameter to filter in
messages that contain that substring. Otherwise, the test will fail.

Note that the substring is case-sensitive.

#[cfg(test)]
mod tests {
 #[test]
 #[should_panic(expected="Math failed")]
 fn it_fails_panic_expect() {
 let x = 3 + 5;

 assert_eq!(x, 7, "Math failed or wrong assertion: 3 + 5 = {}", x);
 }
}

Example

11

ASSERT: RESULT ENUM

Alternatively, instead of using
assert! macros, test functions
can return a Result enum to flag
success or failure. The Ok variant
should either be an empty tuple or
one that returns an ExitCode
struct.

Note that the should_panic
attribute cannot be used on such
test functions.

#[test]
fn it_fails_result() -> Result <(),
String> {
 let d = String::from("hello!");

 if let Ok(_) = d.parse::<u64>() {
 Ok(())
 }
 else {
 Err(String::from("Cannot parse
string to u64"))
 }
}

Exam
ple

12

TESTS: IGNORE

All tests are run by default. If a test may take some time to run and should
not be run by default unless explicitly stated, the ignore attribute can be
added to the test function.

#[test]

#[ignore]

#[should_panic]

fn it_panics_ignore() {

 panic!("Hi!");

}

13

TESTS: IGNORE

Ignored tests can be run by adding the --ignored flag to the test
executable compiled using rustc, or running cargo test --
--ignored inside a package.

14

TESTS: PACKAGES

Tests in a package can be run by running cargo test. Cargo will then
compile the package and run all available tests.

Example

15

TESTS: UNIT TESTS

By convention, unit tests are
written in the same file as the code
they are testing - just inside a
module with the cfg(test)
attribute.

Testing private functions is possible
by useing the super keyword
inside the test module.

fn main() {

 // Main code here...

}

#[cfg(test)]

mod tests {

 use super::*;

 #[test]

 fn it_sets_ri() {

 let ri = ComplexRI::new(1.0, 2.0);

 assert_eq!(ri.real(), 1.0);

 assert_eq!(ri.imag(), 2.0);

 }

 // Other tests here...

}

Example

16

TESTS: INTEGRATION TESTS

By convention, integration tests are
placed in a separate folder in the
same level as src. This means that
these tests are their own separate
crate.

Integration tests test for
functionality of source code when
combined together. They are
usually created for library crates.

complex_nums

 | src

 | | main.rs

 | .gitignore

 | Cargo.toml

 | tests

 | | i_test.rs

Exam
ple

17

TESTS: INTEGRATED TESTS

Note that tests inside the integrated test folder are not enclosed in
modules annotated with the cfg(test) attribute. However, the test
functions are still annotated with the test attribute.

#[test]

fn it_sets_ri() {
 let ri = ComplexRI::new(1.0, 2.0);

 assert_eq!(ri.real(), 1.0);

 assert_eq!(ri.imag(), 2.0);

}

18

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

04c: Rust Unit Testing

