
CoE 164
Computing Platforms

05b: Rust Paths and Files

2

A file is a collection of data treated
as a single entity saved on some
memory storage.

In Linux, "everything"* is a file. This
includes hardware connected to the
computer and data streams like
internet connections.

FILES

* If it is not a file, it is otherwise a process.

3

LINUX FILE TYPES

Regular

Text and data files

Computer programs

Special

Hardware

Inter-process communication
sockets and pipes

Directory

Container of files

Example

4

All Linux-based operating systems
follow the Filesystem Hierarchy
Standard (FHS). This organizes
the different files that make up the
operating system into logically
consistent groups.

The root directory / encloses all of
the files and folders.

LINUX FHS

/
 |- bin
 |- boot
 |- dev
 |- etc
 |- home
 |- lib
 |- media
 |- mnt
 |- opt
 |- proc
 |- usr
 | |- bin
 | |- sbin
 |- var
 |- ...

Exam
ple

PATH

A path is a string that uniquely identifies a location in some directory
structure.

There are different ways of representing a path depending on the
operating system (OS). Most common of these are the Linux- and
Windows-style paths.

Linux:
/usr/bin/g++

Windows:
C:\Users\Admin\scoop\apps\msys2\current\ucrt64.exe

Exam
ple

PATH: RELATIVITY

OSes have a root directory which encloses all of the files and folders in a
system. Paths that are written containing the root at its leftmost is called
an absolute path. In contrast, a relative path is written with a directory
not the root at its leftmost.

Linux:
/usr/bin/g++ // Absolute
./Downloads // Relative

Windows:
C:\Users\Admin\scoop\apps\msys2\current // Absolute
.\%USERPROFILE%\Downloads // Relative

Exam
ple

PATH: CREATE

The Path struct represents a path. The module automatically represents
the path specifically to the OS it is run from.

Path manipulation is part of the standard library.

use std::path::Path;

let current_dir = Path::new("/");
let some_path = Path::new("/home/admin/Downloads");

println!("Current Directory: {}", current_dir.display());

Exam
ple

PATH: MANIPULATE

Path has methods that allow creation of new paths. This is similar to
running the cd command in a terminal.

let download_path = Path::new("/home/admin/Downloads");

// /home/admin
let parent_path = download_path.parent().unwrap();

// /home/admin/Downloads/Programs
let child_path = download_path.join("Programs");

Exam
ple

PATH: MANIPULATE

Some methods of Path return a PathBuf struct that enables in-place
editing. The relationship between Path and PathBuf deref-wise is the
same as with &str and String.

let download_path = Path::new("./src");

let child_path = download_path.join("assets"); // ./src/assets
child_path.pop(); // ./src
child_path.push("my_lib"); // ./src/my_lib

let child_abs_path = child_path.canonicalize().ok();

Exam
ple

PATH: MANIPULATE

PathBuf can also be created from scratch. This is useful when the path
will be built in multiple parts of the program.

use std::path::PathBuf;

let download_path = PathBuf::new();

// /home/admin
download_path.push("/home");
download_path.push("/admin");

Exam
ple

PATH: ERRORS

Most methods of Path and PathBuf return a Result enum. The most
common error encountered is nonexistence of a path.

let download_path = Path::new("./src");

let dp_abs_o = download_path.canonicalize().ok(); // Absolute path
let dp_is_exist_o = download_path.try_exists().ok();

Exam
ple

FILE: OPEN

A file can be opened by creating a File struct from a path. The path can
either be a String or a Path.

use std::fs::File;
use std::path::Path;

let fh_path = Path::new("/home/admin/Downloads/README.txt");
let mut fh = File::open(fh_path).ok();

Exam
ple

FILE: OPEN OPTIONS

Files are opened for reading only by default. An OpenOptions struct can
be created instead to set the different read or write options.

use std::fs::{File, OpenOptions};
use std::path::Path;

let fh_path = Path::new("/home/admin/Downloads/README.txt");
let mut fh = OpenOptions::new()
 .create(true).write(true).truncate(true)
 .open(&fh_path)
 .ok();

Exam
ple

FILE: READ

File has methods that allow reading of files treated as a readable string
or collection of bytes. This usually requires allocation of another variable
where the contents will be stored.

use std::io::{Read};

let mut fh = File::open("hello.txt")?;
let mut fh_buf = String::new();
fh.read_to_string(&mut fh_buf)?;

println!("-----Contents-----\n{}", fh_buf);

Exam
ple

FILE: LINE READ

A common method of reading files is reading by line. For memory
efficiency, a BufReader should be used.

use std::io::{BufRead, BufReader};

let mut fh = File::open("hello.txt")?;
let fh_lines = BufReader::new(fh).lines();

for each_line in fh_lines.flatten() {
 println!("{}", each_line);
}

Exam
ple

FILE: FILE POINTER

The underlying structure of a File is a file pointer, which is a one way
pointer to a specific byte location of the file. This can be indirectly
manipulated from its Seek trait.

use std::io::{Seek};

let mut fh = File::open("hello.txt")?;
let mut fh_buf: Vec <u8> = vec![];
let mut fh_str = String::new();
fh.read_to_end(&mut fh_buf); // Read as bytes
fh.rewind(); // Move fp to beginning again
fh.read_to_string(&mut fh_str); // Read as string

Exam
ple

FILE: CREATE

Similar to reading a file, a file can be created using the File or
OpenOptions structs.

use std::io::{Write};

let mut fh = File::create("hello.txt")?;

let mut fh2 = OpenOptions::new()

 .create(true).write(true).truncate(true)

 .open("hello.txt")?;

Exam
ple

FILE: WRITE

File has methods that allow writing of files treated as a collection of
bytes. To write a formatted string, use the write! macro.

use std::io::{Write};

let mut fh = File::create("hello.txt")?;

fh.write_all(b"Hello world!");

write!(fh, "3 + 3 = {}", 3 + 3);

19

RESOURCES

◦ The Rust Book
◦ Rust by Example

https://doc.rust-lang.org/stable/book
https://doc.rust-lang.org/rust-by-example/

CoE 164
Computing Platforms

05b: Rust Paths and Files

