
CoE 164
Computing Platforms

Midterm Problem
Academic Period: 2nd Semester AY 2022-2023
Workload: 24 hours
Synopsis: Obfuscated, compressed, and executable text

Description
Communication privacy is in the forefront of most
people's priorities in the current era of very fast
information exchange via the internet. Many
unwanted people find a way to seek access into the
internet usage of random and unsuspecting people,
such as email inboxes, website accounts, and chat
conversations, for various illicit purposes. This may
include stealing money and property, impersonation,
and blackmailing. A way to be able to deter such
acts is through obfuscation of messages. Obfuscation is "scrambling" a message before
sending it to the intended recipient, who will then "unscramble" it to get a hold of the true
message. Since this method still enables third-party spies to get hold of this scrambled
message, the unscrambling algorithm for the message should be known only to the
intended recipient. A more secure version of this is called encryption, wherein the message
is encoded with a key, which both only the sender and receiver should have. Without the
key, the encoded message cannot be decoded by anyone. The encryption and decryption
algorithms should ideally be open to everyone.

Before delving into encryption, you have decided to write some sort of obfuscation
algorithm for the messages that you would like to send over some channel. A channel is
some sort of medium where two or more parties exchange information. It can be through
telephone, wireless, or the internet. Even barcodes can be treated as some channel! Having
mulled over the possible workflows, you have decided to stick to encode a message as a
computer program, which the intended recipient will run in their own machine. The program
should have a very simple syntax and very few commands so that technically any computer
can run it. As such, you have formulated diropql.

CoE 164 2s2223 MidP | Page 1 of 7



diropql Language
diropql (diro portable query language) is a simple language consisting only of seven
commands. Each command corresponds to a letter in ASCII. diropql manipulates a virtual
contiguous row of memory cells, each holding one byte, whose value can be changed. The
first task is to create the interpreter, which reads a diropql program from a file. Then, the
next task is creating the encoder, which accepts a message written using only ASCII
characters, and creates a .dpql program that will output the message when run.

With a very limited command set, a diropql program will contain a very large amount of the
same seven characters especially if the messages get very long. Having realized that this
will not do especially if you wanted the program to be encoded as a barcode or sent to your
recipients, you have suddenly thought that you can take advantage of this same fact and
additionally compress the output program!

Program Compression
You have decided that before compression, any unrecognized characters in a diropql
program should be removed. Then, the now-cleaned program will be treated as a single
string and compressed by processing it through the following algorithms in order:

● Burrows-Wheeler transform
● Move-to-front transform
● Run-length encoding
● Huffman encoding

The algorithms above were selected to take advantage of the fact that a diropql program
will have runs of repeated commands somewhere, and these runs can be encoded as
succinctly as possible.

Combining Everything
The compression algorithm you have formulated consists of four different algorithms that
exploit redundancies in a diropql program. The final result of the algorithm will be a binary
string whose length may not be divisible by eight. Therefore, some arbitrary number of
zeros may have to be appended to it such that the final length can be evenly split into
groups of eight bits. In addition, the compressed program cannot be properly sent through
a text message since some values in ASCII that are mapped into the numbers are
unprintable. Hence, a way to make them "readable" should be formulated.

You have decided to encode the compressed program as a stream of printable ASCII
characters. To make sure that you are not undoing the compression procedure
substantially, you have decided to use Base85 encoding. This encoding will automatically
append the appropriate amount of zeros needed to make sure that the length of the binary
string to be encoded is divisible by eight. But, before encoding the compressed program,
you have realized that the compression algorithms alone need some initial values for the

CoE 164 2s2223 MidP | Page 2 of 7



recipient to be able to undo the obfuscation. Therefore, we need to append these values as
metadata before encoding.

After the program is converted to Base85, a magic string (DIROPQLZ) is then appended
before it to denote that this chunk of text is a compressed diropql program. This final
obfuscated string can now be sent to recipients that have knowledge of the compression
scheme and the program commands. If this string were to be sent as a file, it should have
the .dpqlz extension to differentiate it from the uncompressed version of the program.

Test Suite
Testing a program is one of the most important aspects of computer programming. Hence,
you have formulated various function signatures pertaining to the different parts of the
obfuscator, which will be filled up as you progress with coding the obfuscator. The list of
required function signatures, data structures, and modules to test and implement are as
follows:

● Module dpql
○ fn write(text: &String) -> String

■ Convert text into a diropql program that outputs text and returns
it.

○ fn read(prog: &String) -> String

■ Read prog as a diropql program, interpret it, and return the contents
of the output queue.

○ Submodule zip
■ fn write(text: &String) -> String

● Convert text into a diropqlz program that outputs text and
returns it.

■ fn read(prog: &String) -> String

● Read prog as a diropqlz program, decompress it, interpret it,
and return the contents of the output queue.

■ fn write_with_meta(meta: &DpqlzMeta, prog: &Vec
<u8>) -> String

● Create and return a diropqlz program using meta as the
metadata and prog as a compressed diropql program.

■ fn read_with_meta(prog: &String) -> (DpqlzMeta,
Vec <u8>)

● Read prog as a diropqlz program and output its metadata
and resulting compressed program as a vector of bits,
respectively.

■ struct DpqlzMeta - struct containing the following fields:
● mlen: u64 - length of the obfuscated message msg in bytes
● moffset: u8 - number of bits/elements to exclude or ignore

from the end of msg

CoE 164 2s2223 MidP | Page 3 of 7



● bwt_idx: u64 - suffix index associated with the
Burrows-Wheeler transform

● huf_bitlens: Vec <u8> - array of 1-byte numbers
corresponding to the bit lengths of the derived canonical
Huffman codebook

● Module compressor
○ Submodule bwt

■ fn encode(text: &String) -> (String, usize)

● Transform text using Burrows-Wheeler transform and return
the result and index, respectively.

■ fn decode(text: &String, index: &u64) -> String

● Return the inverse Burrows-Wheeler transform of text using
the suffix index index.

○ Submodule mtf
■ fn encode(text: &String, alphabet: &String) -> Vec

<u8>

● Transform text consisting of the characters from alphabet

using move-to-front and return the result as a vector of
indices.

■ fn decode(data: &Vec <u8>, alphabet: &String) ->
String

● Decode text consisting of the characters from alphabet

that was transformed using move-to-front and return the result
as a string.

○ Submodule rle
■ fn encode(text: &Vec <u8>) -> Vec <u8>

● Compress the list of numbers text using run-length encoding
and return the result as a vector of numbers.

■ fn decode(data: &Vec <u8>) -> Vec <u8>

● Decode the list of numbers data encoded using run-length
encoding and return the result as a vector of numbers.

○ Submodule huffman
■ fn encode(text: &Vec <u8>) -> (Vec <u8>, Vec <u8>)

● Encode the list of numbers text to its Huffman encoding and
return the result as a vector of bits (each bit is an element) and
the generated list of bit lengths of codewords of the
corresponding canonical Huffman codebook, respectively.

■ fn decode(data: &Vec <u8>, canon_freqs: &Vec <u8>)
-> Vec <u8>

● Decode the list of bits data encoded using Huffman encoding
and the corresponding list of bit lengths canon_freqs, and
return the result as a list of numbers.

CoE 164 2s2223 MidP | Page 4 of 7



Note that the functions above may not have the complete signatures, and you may have to
make the modules and functions public for them to be used in other functions, or annotate
their lifetimes. Also, since this is your program, you have the liberty to add more functions
and modules as needed.

Each function should have a tests module somewhere in it, which contains a collection of
test cases. A sample snippet for testing the functions inside the compressor::rle
module is as follows:

// src/compressor/rle.rs

pub fn encode(text: &Vec <u64>) -> Vec <u64> {
// rle program here

}

pub fn decode(data: &Vec <u64>) -> Vec <u64> {
// rle program here

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn encode_pt1() {

[...]
}

}

Making the Program
You have expected that the final program will be a library that you can incorporate in future
projects that will use this scheme, such as a custom instant messenger. The library consists
of two major modules - the obfuscator, which encodes a message into a diropqlz string,
and deobfuscator, which does the reverse of the obfuscator.

While outlining the obfuscation scheme, you have mulled over its complexity and the fact
that you cannot realistically do it alone in a short amount of time. Hence, you have enlisted
the help of two of your friends. You have decided to split the responsibility of creating the
diropql interpreter, compression algorithm, and test suite among the three of you. Rust has
been decided as the language of choice for the program for the opinion that this obfuscator
should be fast but secure enough that it will not improperly access the memory of any
computer that will run it. In addition, you have compiled a document outlining the diropql
language, the compression algorithms, and the diropqlz file format so that the three of you
can work efficiently together.

CoE 164 2s2223 MidP | Page 5 of 7



Additional Description/Requirements
For the purposes of easy set-up on any computer, you have decided that the program
should not contain any imports to libraries that need to be downloaded through the cargo
package manager (i.e. the internet) except for the following:

● base85

You have decided that the obfuscator will only accept messages that use only the printable
characters in ASCII and whitespaces (i.e. the newline \n, carriage return \r, and space). In
addition, since you have not incorporated any error correction in the already-complex
obfuscation algorithm, you assume that all obfuscated messages entered through the
program can always be deobfuscated in a valid and runnable diropql program.

After developing the (de)obfuscator, you three have decided to assess yourselves and your
group's performance in creating the software. Hence, you have decided to enlist the help of
another friend to make a form where you can send feedback anonymously, read the
feedback in it, and inform all of you individually of the result. The form will be released after
the deadline when the program should have been finished.

Upload the (de)obfuscator as a cargo package to your remote repository. The repository
seems to hate compressed files, so make sure to not encase your codes in one. However,
you can upload or make folders within the repository. Write on the submission notes, source
code, and feedback form the following information:

● Module that you are mainly responsible for (choose between the following: diropql,
compressor, test). Note that what you will mention here will be the component that
will be individually graded to you

● Which module(s) did you substantially contribute to
● Acknowledgement of their group members with their respective names and student

numbers

Grading Rubric
diropql Interpreter and (De)Obfuscator Pre-processing (A, 65%)
20% Message encoder to diropql
15% diropql interpreter (dirol commands)
20% diropql interpreter (pq commands)
5% Obfuscator output after compression
5% Deobfuscator splitter before decompression

Program (De)Compressor (B, 65%)
20% Burrows-Wheeler transform (encode)
15% Burrows-Wheeler transform (decode)
2% Move-to-front transform (encode)

CoE 164 2s2223 MidP | Page 6 of 7



2% Move-to-front transform (decode)
3% Run-length encoding (encode)
3% Run-length encoding (decode)
10% Variable-length encoding (encode)
10% Variable-length encoding (decode)

Test Suite (C, 65%)
10% Message encoder to diropql
10% diropql interpreter
10% Burrows-Wheeler transform
10% Move-to-front transform
10% Run-length encoding
10% Variable-length encoding
5% Obfuscator output and deobfuscator splitter

Combined Program (All Members, 35%)
10% Obfuscator program working
10% Deobfuscator program working
15% Self-assessment

CoE 164 2s2223 MidP | Page 7 of 7


