
CoE 164
Computing Platforms

12b: Rust SIMD

SIMD

In a single-instruction multiple-data (SIMD) processor, multiple
processors are loaded with the same instructions, but working on
different data units. They are usually used to process smaller inputs
to build a larger output.

Output

A

B

C

CPU

Core A

Core B

Core C

In A

In B

In C

Instr A

Modern CPUs employ vector
operations, which are instructions
that process four (4) to eight (8) data
in a single cycle.

Vector operations are instruction set
extensions that are specific to the
CPU and manufacturer.

SIMD
VECTORIZATION

SIMD VECTORIZATION

Scalar

◦ One input and output each clock
cycle

◦ Same operations have to be
executed in successions

Vector

◦ Four to eight input and output
each clock cycle

◦ Four to eight same operations can
be executed at the same time

CPUu64 u64 CPU
u64
u64
u64

u64
u64
u64
u64

u64

Intel has been at the forefront of adding
the following SIMD extensions to their
64-bit processors.

◦ Streaming SIMD Extensions (SSE
4.2) - 2008 and later

◦ Advanced Vector Instructions (AVX
2) - 2013 and later

SIMD is platform-dependent!

SIMD
VECTORIZATION

Operating on vectors requires knowledge
of intrinsics, or the functions specifically
implemented by the CPU manufacturer.

SSE and AVX intrinsics are named based
on the operation itself and the data type
they are operating on.

SIMD INTRINSICS

SIMD INTRINSICS

_mm_add_ps(a: __m128d, b: __m128d) -> __m128d

prefix for the
oldest SIMD
extension
(MMX)

also used for
SSE

arithmetic
operation to
perform

data type of
vectors to
operate on

precision
single (32
bit)

addition

output data
type

128 bit
vector of
floats (4x 32
bit floats)

Taking advantage of SIMD vectorization
generally follows the three steps:

1. Format data so that it becomes an
SIMD vector.

2. Operate on the SIMD vectors.
3. Recover data from the SIMD

vectors.

SIMD
VECTORIZATION

Exam
ple

SIMD: LOAD

The load intrinsic converts an array or vector of elements into an SIMD
vector. The appropriate intrinsic for the data type of the array should be
used.

Note that the arguments require conversion of arrays or vectors into its
raw and unsafe pointers.

// assign 32-bit float 0.3 to all four lanes
let a = _mm_load1_ps(0.3);

// load (unaligned) 4x32 bit floats
let b = _mm_loadu_ps([0.0, 1.0, 2.0, 3.0].as_ptr() as *const _);

Exam
ple

SIMD: OPERATIONS

SSE and AVX supports various operations on the vectors. Note that both
operands should have the same data type.

// a = x + (y * z)
let a = _mm_add_ps(x, __mm_mul_ps(y, z));

// b = x & (y | z)
let b = _mm_and_si128(x, __mm_or_si128(y, z));

SIMD: OPERATIONS

Arithmetic

add
adds
sub
subs
mul
div

Boolean

and
or
xor
sll
srl
sra

_mm_add_ps(a: __m128d, b: __m128d) -> __m128d

Data Types

u8/i8
u16/i16
i32
i64
i128
ps
pd

Lane Lengths

m128
m256
m512
m128i/d/bh
m256i/d/bh
m512i/d/bh

More operations are available!

Exam
ple

SIMD: STORE

The store intrinsic converts an SIMD vector into an array. The
destination array should be mutable and has the appropriate size for the
intrinsic to work.

Note that the arguments require conversion of arrays or vectors into its
raw and unsafe pointers.

// save x into (unaligned) v
let mut v = [0f32; 4];
_mm_storeu_ps(v.as_mut_ptr() as *mut _, x);

// v now has the values of x

Exam
ple

SIMD: FEATURE DETECTION

Since SIMD programs are platform-dependent, we should check whether the
computer that runs the Rust program supports SSE or AVX using the feature
detection macro. Otherwise, it is a good idea to execute a fallback function that does
not use SIMD intrinsics.

Note that the SIMD intrinsics are unsafe, so execution of functions that use them
should be enclosed in an unsafe block.

#[cfg(any(target_arch="x86_64"))]
{
 if is_x86_feature_detected!("avx2") {
 return unsafe { fcn_avx2() };
 }
}

SIMD: FEATURE DETECTION

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
{
 if is_x86_feature_detected!("avx2") {
 println!("AVX2 detected!");
 return unsafe { fcn_avx2(dirs) };
 }
 else if is_x86_feature_detected!("sse4.2") {
 return unsafe { fcn_sse42(dirs) };
 }
}

fcn_fallback(dirs);

Example

Exam
ple

SIMD: FEATURE DETECTION

Functions containing SIMD intrinsics should be prefixed with an unsafe keyword.
cfg and target_feature attributes should also be set to note which
architecture and instruction set extension the function is for.

All SIMD intrinsics are in the std::arch package. The appropriate package for the
CPU address size (32- or 64-bit) should be imported.

#[cfg(any(target_arch="x86_64"))]
#[target_feature(enable="sse4.2")]
unsafe fn fcn_sse42(a: &mut f32, b: &mut [f32]) {
 #[cfg(target_arch = "x86_64")]
 use std::arch::x86_64::*;
}

Exam
ple

Rust currently has an experimental portable SIMD library to deal with the feature
detection and juggling of intrinsics. Common CPUs can now be made to use SIMD
extensions using a platform-agnostic library.

The code from the portable-simd crate below shows the basic usage of the said
library.

SIMD: PORTABILITY

#![feature(portable_simd)]

use std::simd::f32x4;

fn main() {

 let a = f32x4::splat(10.0);

 let b = f32x4::from_array([1.0, 2.0, 3.0, 4.0]);

 println!("{:?}", a + b);
}

17

RESOURCES

◦ The Rust Book
◦ Intel Intrinsics Reference
◦ SIMD Tutorial from Utrecht

University

https://doc.rust-lang.org/stable/book
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.cs.uu.nl/docs/vakken/magr/2017-2018/

CoE 164
Computing Platforms

12b: Rust SIMD

