
CoE 164
Computing Platforms

Software Exercise 03
Academic Period: 2nd Semester AY 2021-2022
Workload: 6 hours
Synopsis: A Faster Matrix Multiplication?
Submission Platform: UVLe Submission Bin

Introduction
Working with matrices has been a boon for a lot of fields,
including computer graphics. 3D models nowadays can have
thousands to millions of vertices, and transforming them (i.e.
scaling, rotating, etc.) can take a long time. This is because
transformation requires multiplication between two matrices.

The usual way of multiplying matrices is by iterating through
each element of the resulting matrix and dot multiplying the
corresponding row and column in the first and second operand
matrices, respectively, using the indices of this element. With a

time complexity of and relatively easy implementation, this general matrix-matrix𝑂(𝑛3)
multiplication (GEMM) algorithm seems in hindsight to be the fastest one available.
However, a mathematician named Volker Strassen has pushed study into overcoming that
barrier. He claimed that, for a multiplication between two matrices with originally2 × 2
eight (8) multiplications, we can forego one so that we only need to do seven (7).

Given two square (possibly block) matrices and , we can multiply these matrices2 × 2 𝐴 𝐵
using the ordinary method as shown.

𝐴𝐵 = 𝐶

Using the Strassen algorithm, we need to first compute for seven new matrices as𝑀
𝑥

shown below.

𝑀
1

= (𝑎
11

+ 𝑎
22

)(𝑏
11

+ 𝑏
22

)

CoE 164 SE03 | Page 1 of 5



𝑀
2

= (𝑎
21

+ 𝑎
22

)𝑏
11

𝑀
3

= 𝑎
11

(𝑏
12

− 𝑏
22

)

𝑀
4

= 𝑎
22

(𝑏
21

− 𝑏
11

)

𝑀
5

= (𝑎
11

+ 𝑎
12

)𝑏
22

𝑀
6

= (𝑎
21

− 𝑎
11

)(𝑏
11

+ 𝑏
12

)

𝑀
7

= (𝑎
12

− 𝑎
22

)(𝑏
21

+ 𝑏
22

)

These matrices will form the solution matrix as shown below:

As observed, the computation for the matrices need only seven (7) multiplications while𝑀
the rest of the computations are element-wise additions. With a time complexity of

, and using up a significant amount of memory than GEMM, such algorithms are≈ 𝑂(𝑛2.87)
usually used only for large matrices. Also, compared to the common approach, the
Strassen algorithm is recursive, meaning that we can split a matrix into four roughly equal
parts to generate a block matrix, generate the seven intermediate matrices by using2 × 2
the algorithm again when multiplication is needed, and combine the matrices to form the
answer block matrix. Division of such matrices are easy if they are square and their
dimensions are a multiple of a power of two. However, in practice, the matrices are padded
with zeroed-out columns and rows such that their dimensions are even before they are split,
and the paddings are discarded on merging.

You were tasked in your undergraduate research to write algorithms for 3D graphics
transformation. After reading a lot about the Strassen algorithm, you came across a paper
trying to dispel some of the “myths” associated with the algorithm. They have demonstrated
that the Strassen algorithm can be re-implemented to use around the same memory space
as that of the usual GEMM, and that it can be used optimally on smaller matrices. They
have discussed that applying the Strassen algorithm by dividing the matrix at most twice,
and performing GEMM on the resulting split matrices, performs slightly faster than using
GEMM alone, especially on multi-core processors.

In addition, this paper has outlined a specific chain of steps to perform the Strassen
algorithm to reduce the memory footprint. The steps for one recursion in order are as
follows. Note that this arrangement still contains the classic seven required multiplications
with the addition of two temporary buffers and and usage of the answer matrix as an𝑋 𝑌 𝐶
in-place buffer.

CoE 164 SE03 | Page 2 of 5

https://dl.acm.org/doi/10.5555/3014904.3014983
https://arxiv.org/abs/0707.2347v5


1. 𝑋 = 𝐴
11

− 𝐴
21

2. 𝑌 = 𝐵
22

− 𝐵
12

3. 𝐶
21

= 𝑋𝑌

4. 𝑋 = 𝐴
21

+ 𝐴
22

5. 𝑌 = 𝐵
12

− 𝐵
11

6. 𝐶
22

= 𝑋𝑌
7. 𝑋 = 𝑋 − 𝐴

11
8. 𝑌 = 𝐵

22
− 𝑌

9. 𝐶
12

= 𝑋𝑌
10. 𝑋 = 𝐴

12
− 𝑋

11. 𝐶
11

= 𝑋𝐵
22

12. 𝑋 = 𝐴
11

𝐵
11

13. 𝐶
12

= 𝑋 + 𝐶
12

14. 𝐶
21

= 𝐶
12

+ 𝐶
21

15. 𝐶
12

= 𝐶
12

+ 𝐶
22

16. 𝐶
22

= 𝐶
21

+ 𝐶
22

17. 𝐶
12

= 𝐶
12

+ 𝐶
11

18. 𝑌 = 𝑌 − 𝐵
21

19. 𝐶
11

= 𝐴
22

𝑌
20. 𝐶

21
= 𝐶

21
− 𝐶

11
21. 𝐶

11
= 𝐴

12
𝐵

21
22. 𝐶

11
= 𝑋 + 𝐶

11

With this observation, you are now aiming to implement a variation of the Strassen
algorithm - one that uses the Strassen algorithm to perform multiplication in at most two
recursions, and performing GEMM on the remaining recursions. Note than when the two
matrices have dimensions , the result of their multiplication is trivial while two1 × 1
matrices that have dimensions can be processed with only one recursion of the2 × 2
Strassen algorithm.

Input
The input to the program starts with a number indicating the number of test cases. test𝑇 𝑇
cases follow, with each test case starting with a line containing four integers - , ,𝐴

𝑟𝑜𝑤
𝐴

𝑐𝑜𝑙

, and , indicating the dimensions of matrices (of dimension and (of𝐵
𝑟𝑜𝑤

𝐵
𝑐𝑜𝑙

𝐴 𝐴
𝑟𝑜𝑤

× 𝐴
𝑐𝑜𝑙

) 𝐵

dimension ), respectively. The next lines will contain matrix , with each line𝐵
𝑟𝑜𝑤

× 𝐵
𝑐𝑜𝑙

𝐴
𝑟𝑜𝑤

𝐴

having integers each. Then, the next lines will contain matrix , with each line𝐴
𝑐𝑜𝑙

𝐵
𝑟𝑜𝑤

𝐵

having integers each.𝐵
𝑐𝑜𝑙

Output
The output should consist of blocks corresponding to the test cases. Each test case𝑇 𝑇 𝑡

𝑖

should start with a line containing the string Case # :, with starting at 0. Then, the𝑡
𝑖

+ 1 𝑡
𝑖

next line contains two integers , and , denoting the dimensions of the answer𝐶
𝑟𝑜𝑤

𝐶
𝑐𝑜𝑙

matrix (of dimension ). Then, the next lines contain matrix , each having𝐶 𝐶
𝑟𝑜𝑤

× 𝐶
𝑐𝑜𝑙

𝐶
𝑟𝑜𝑤

𝐶

integers each.𝐶
𝑐𝑜𝑙

CoE 164 SE03 | Page 3 of 5



Example
Input
2
2 2 2 2
1 -1
-1 1
1 2
3 4
4 4 4 4
3 4 5 4
5 6 3 -1
2 3 4 -6
-4 3 4 -6
2 -5 9 0
0 0 1 2
3 4 -5 2
8 9 -1 3

Output
Case #1:
2 2
-2 -2
2 2
Case #2:
4 4
53 41 2 30
11 -22 37 15
-32 -48 7 -4
-44 -18 -47 -4

Additional Description/Requirements
Your program can only support the following limits. Note that this is a special problem
because you can create your program to pass either the normal inputs only or both the
normal and hard inputs.

1 ≤ 𝑇 ≤ 10
𝐴

𝑐𝑜𝑙
= 𝐵

𝑟𝑜𝑤

𝐴
𝑖𝑗

, 𝐵
𝑖𝑗

∈ 𝑍

− 100 ≤ 𝐴
𝑖𝑗

, 𝐵
𝑖𝑗

≤ 100

Normal Input
𝐴

𝑟𝑜𝑤
= 𝐴

𝑐𝑜𝑙
= 𝐵

𝑟𝑜𝑤
= 𝐵

𝑐𝑜𝑙

𝐴
𝑟𝑜𝑤

, 𝐴
𝑐𝑜𝑙

, 𝐵
𝑟𝑜𝑤

, 𝐵
𝑐𝑜𝑙

∈ {2𝑘 | 2 ≤ 𝑘 ≤ 7}

CoE 164 SE03 | Page 4 of 5



Hard Input
2 ≤ 𝐴

𝑟𝑜𝑤
, 𝐴

𝑐𝑜𝑙
, 𝐵

𝑟𝑜𝑤
, 𝐵

𝑐𝑜𝑙
≤ 500

You can assume that all of the inputs are well-formed and within the above constraints, and
you are not required to handle any errors arising from them. After all, your thesis adviser is
waiting for your progress report!

Since you are trying to replicate the results of the paper to the best of your abilities, your
program should not use any library that implements some sort of matrix-matrix
multiplication. Additionally, your program should also not use any libraries that need to be
downloaded off the internet (e.g. libraries that have to be downloaded from pip (for Python)
or npm (for Javascript) are prohibited).

Grading Rubric
30% Strassen algorithm (recursive limit and split)
40% Strassen algorithm (order of operations and result)
20% Normal GEMM (after two-level Strassen algorithm)
10% Program passes on normal input
10% Program passes on hard input

CoE 164 SE03 | Page 5 of 5


