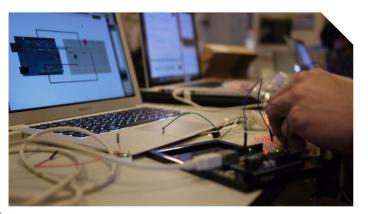


## CoE 164 Computing Platforms


#### 00: About the Course





## **HELLO!**

Welcome to one of the laboratory components of your core CoE courses!





#### **ICE BREAKING SESSION!**

Check the polls!





## WHAT YOU ALREADY KNOW...

- EEE 111
  - Basic programming
  - Computations
- EEE 137
  - Probability and statistics



## WHAT YOU ALREADY KNOW...

- Math 40
  - Linear algebra
  - Matrix operations
- EEE 121
  - Basic programming
  - Data structures and algorithms
- EEE 153
  - Computer organization
  - Memory, cache, etc.



#### WHAT YOU ARE CURRENTLY STUDYING...

- CoE 161
  - Information theory
  - Computational complexity theory
- CoE 163
  - Computer algorithms and hardware



# WHAT ARE GOOD TO KNOW...

- Knowledge of several programming languages
  - C/C++
  - Python
  - Matlab/Octave
  - Assembly (MIPS)



## WHAT YOU'LL LEARN...

- How do we implement algorithms with efficiency in mind?
- Which tool(s) do I use to solve a computer engineering problem?
- Which tool is better in solving my problem?



#### **COURSE SEGMENTS**

- Rust programming
- [CoE 161] Introduction to Information and Complexity
  - Compression algorithms
  - Data transmission over different mediums
  - Turing machines
- [CoE 163] Computing Architectures and Algorithms
  - Program Profiling
  - Linear algebra operations
  - Parallel and GPU programming



## RUST PROGRAMMING

- Rust is a programming language designed to write fast and safe code.
- It can be used to write systems
  - Websites
  - Embedded
  - Native applications



# INFORMATION AND COMPLEXITY

- Information theory deals with quantization of information and ways to manipulate it.
- Computational complexity theory deals with ways to analyze program metrics and their general mode of operation.




#### COMPUTING ARCHITECTURES AND ALGORITHMS

- We can write more efficient programs and algorithms with the following knowledge
  - Complexity theory
  - Profiling
  - Concurrency
- We can exploit hardware to do the same
  - Parallel programming
  - Computer organization

#### SURPRISE REVIEW QUIZ!

Check the polls!





## CLASS ARRANGEMENT

CoE 164 is **hybrid**, meaning sessions will be held both onsite and offsite (not fully hyflex). Any software exercises will have **deadlines** usually a week after release.



#### **LEARNING TOOLS**

- Decent internet connection
  - Exercise submission
- Access to a desktop, laptop, or smartphone
  - Programming exercises
  - Capstone exercise
  - Will try our best to either:
    - Make exercises solvable on slow computers
    - Lend a remote server (VPS) or platform for your programs
- Better to have a camera and microphone for synchronous meetings, if any



## **CLASS MATERIALS**

- Slides/Study guides
- Resource/reading links
  - UP Microlab wiki
- Forums
  - UVLe
  - Piazza



#### **GRADING RUBRIC**

Academic requirements:

- 50% Software exercise (SE)
- 20% Midterm problem (MidP)
- 30% Capstone problem (CP)

Completion requirements:

- Submit half of SEs
- Submit MidP
- Submit CP

We do not give 4.0s!



## LATE SUBMISSIONS

We accept late submissions for everything until **Saturday, 01 June 2024** (end of classes), but...

- May have deductions
- May be evaluated late

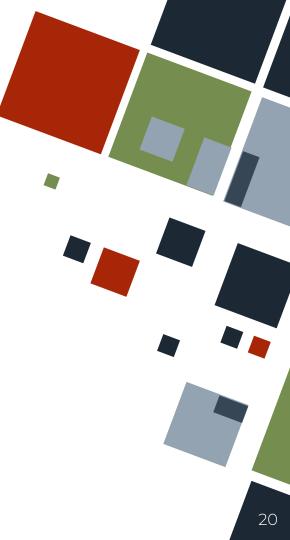


## INSTRUCTOR INFORMATION

#### Carl C. Dizon

Lecturer ME Electrical Engineering

carl [dot] dizon [at] eeemail


... or forums via UVLe (or Piazza)!



## OTHER INSTRUCTORS

CoE 164 is co-taught with one other instructor from CARE:

• Carl Lester V. Fabian



#### **OPEN FORUM**

Enjoy and good luck with the course!







## CoE 164 Computing Platforms

#### 00: About the Course



