
CoE 164
Computing Platforms

03b: Generics and Traits

2

POLYMORPHISM

Polymorphism is one of the four
"pillars" of object oriented
programming - defined as
something that occurs in several
forms.

Rust enables programmers to
write polymorphic data types and
functions.

Exam
ple

3

Any data type in Rust can have its own string representation. Types that
have a representation can be converted by using the to_string()
method.

EXAMPLE: STRING REPRESENTATION

struct SampleStruct;

let ss = SampleStruct;

println!("Number 3: {}", 3.to_string());
println!("bool: {}", true.to_string());
println!("struct: {}", ss.to_string());

4

INTERFACES

An interface is a collection
of properties and function
signatures that a class must
implement. It can be
implemented even by totally
unrelated classes!

Rust traits are a similar
implementation of interfaces.

+ to_string(): out String

<<trait>>
ToString

Exam
ple

Traits are declared using the trait keyword. Method signatures are
placed inside the block with the first argument (&self) always pointing to
the instance of the struct or enum that implements it.

5

TRAITS

pub trait ToString {
 fn to_string(&self) -> String;
}

Example

6

Data types can implement traits by
using the for keyword in an impl
block for the trait. These data types
should have an implementation for
every method in the trait block.

TRAITS: IMPLEMENTERS

struct SampleStruct;

impl ToString for SampleStruct {
 fn to_string(&self) -> String {
 return "Sample class!" ;
 }
}

let ss = SampleStruct;
println!("struct: {}",
ss.to_string());

TRAITS: INHERITANCE TREE

+ to_string(): out String

<<trait>>
ToString

SampleStruct

Exam
ple

It is also possible to insert a default implementation of a trait method. In
this case, data types that will have the trait are not required to implement
the method, but they can override it by writing a new implementation.

8

TRAITS: DEFAULT IMPLEMENTATIONS

pub trait ToString {
 fn to_string(&self) -> String {
 "str()".to_string()
 }
}

Exam
ple

Traits can be treated as data types - that is, functions and methods can
return and accept data types of a certain trait.

9

TRAITS: FUNCTIONS

fn ps_display(obj: &impl ToString) -> String {
 format!("PS> {}", obj.to_string())
}

println!("{}", ps_display(ss));

Exam
ple

Functions and methods can accept data types that have multiple traits by
listing using "+". Arguments should have all of the traits specified.

Note that Rust only supports returning of data types that have all of the
traits.

10

TRAITS: MULTIPLE TRAITS

use core::fmt::{Debug, Display};

fn disp_both(obj: &(impl Debug + Display)) {
 println!("Dsp> {}", obj);
 println!("Dbg> {:?}", obj);
}

Exam
ple

Some traits that have their own default implementation that may be
exposed from a library. However, they are not automatically added to any
struct or enum type by default.

11

TRAITS: DERIVE

struct SampleStruct;

// Compile error!
let ss = SampleStruct;
println!("{:?}", ss);

Exam
ple

The derive attribute can be added before a struct or enum definition to
give it the default implementation of a trait.

12

TRAITS: DERIVE

#[derive(Debug)]
struct SampleStruct;

// NO compile error
let ss = SampleStruct;
println!("{:?}", ss); // "SampleStruct"

13

GENERIC DATA
TYPES
Generic data types enable code
that is duplicated among different
data types be reused and
consolidated into a single
reference.

Rust usually indicates T or any
single letter as some placeholder
for some (random) data type.

Exam
ple

Functions can have generic types in both of their parameters and return
statements. A list of generic types should be listed first between angled
brackets after the function name.

14

GENERICS: FUNCTIONS

fn largest <T>(list: &[T]) -> &T {
 // code here
}

Exam
ple

Generic types should be enumerated after the struct name. Note that
multiple types can be included, and any name can be substituted for the
placeholders.

15

GENERICS: STRUCTS

struct UvWrapper <U, V> {
 u: U,
 v: V,
}

Exam
ple

Generic types should be enumerated after the enum name. The types can
also appear in enum entries that hold data.

16

GENERICS: ENUMS

enum NullErrOk <E, S> {
 Null,
 Err(E),
 Ok(S),
}

Exam
ple

Generic types should be enumerated after the impl keyword. The name
of the struct or enum to which the method is delegated to should be
declared with its respective generic types list. The type names can be
different from the ones used in the struct or enum declaration.

17

GENERICS: METHODS

impl <E, S> NullErrOk <E, S> {
 fn unwrap_err(&self) -> &E {
 if let NullErrOk::Err(x) = self {
 x
 }
 else {
 panic!("Not an error!");
 }
 }
}

Exam
ple

It is possible to write methods for a specific set of data types by writing
the types inside the places where there would have been a generic type.
In this case, the method is used only for that specific data types.

18

GENERICS: METHODS

impl UvWrapper <f32, f32> {
 fn sum(&self) -> f32 {
 self.u + self.v
 }
}

Exam
ple

Generics from struct or enum declarations can be mixed up with generics
from the methods themselves.

19

GENERICS: METHODS

impl <U, V> UvWrapper <U, V> {
 fn dot <W, X> (&self, other: &UvWrapper <W, X>) -> f32 {
 self.u * other.u + self.v * other.v
 }
}

Exam
ple

The "expanded" way of writing function signatures that accept or return
data types of a certain trait is through generic trait bounds. The generic
types act as placeholders for the data types that should have a certain
trait.

20

GENERICS: TRAIT BOUNDS

fn ps_display(obj: &impl ToString) -> String {
 format!("PS> {}", obj.to_string())
}

fn ps_display_v2 <T: ToString>(obj: &T) -> String {
 format!("PS> {}", obj.to_string())
}

Exam
ple

The trait bound syntax is useful when multiple parameters with the same
trait is needed or when the function signature gets longer.

21

GENERICS: TRAIT BOUNDS

fn concat <T: Debug>(a: &T, b: &T) -> String {
 // Concatenate debug messages here
}

Exam
ple

Multiple traits can be matched using the trait bound syntax using the +
operator.

22

GENERICS: MULTIPLE TRAIT BOUNDS

use core::fmt::{Debug, Display};

fn disp_both <D: Debug + Display>(obj: &D) {
 println!("Dsp> {}", obj);
 println!("Dbg> {:?}", obj);
}

Exam
ple

Alternatively, the trait bounds can be written in a where clause in case it
becomes too long.

23

fn disp_both <D, V>(obj: &D, obj2: &V) -> bool
where
 D: Debug + Display,
 V: Debug + Display + Clone,
{
 // Do something
}

GENERICS: "WHERE" TRAIT BOUNDS

Exam
ple

It is possible to write methods for a specific set of traits by writing the
traits inside the places where there would have been a generic type using
the trait bound syntax. Blanket implementations can also be written where
a trait has a method applicable on any data type that has another trait.

24

GENERICS: METHODS

impl <T: PartialOrd> UVWrapper <T, T> {
 // some implementation here
}

impl <T: Display> ToString for T {
 // some implementation here
}

25

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

03b: Generics and Traits

