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Annex A: The diropql Language
diropql (diro portable query language) is a minimalistic language used to "encrypt" text
across some unsecure channel. A diropql program starts with 10000 memory cells with
each cell initialized to a value of zero. All cells take in only 1-byte unsigned integers. It will
also start with a memory pointer mp, an instruction pointer ip, and an output queue oq. mp
and ip are nonnegative integers initialized to zero since diropql is a zero-index language.
oq, on the other hand, is initially empty and is assumed to have an infinite size.

A diropql source code is a string encoded in ASCII or UTF-8. If saved as a file, it should
have the extension .dpql. It is run by the diropql interpreter, which starts by looking at the
program source code and finding the first valid command in the language by incrementing
ip one at a time across it. Any invalid commands are ignored by the interpreter. When a
valid command is read, the interpreter will process it depending on the command and the
value pointed to by mp. diropql consists of the following seven commands capable of
manipulating the contents of the memory cells.

command description

l decrement mp by one

r increment mp by one

i increment content pointed by mp by one

d decrement content pointed by mp by one

o push content pointed by mp to oq

p change ip to the index of the matching q command
plus one if the content pointed by mp is zero

q change ip to the index of the matching p command
plus one if the content pointed by mp is nonzero

Note that in general, the interpreter increments ip after each command. However, the p
and q commands modify the ip. In this case, the nesting of p and q follow the same as in
math equations (i.e. inner pqs match and outer pqs match in the following program:
ppidqq).

If mp will point to an invalid memory cell due to an lr command, the value of mp will wrap
around. For example, if mp is currently 0 and the next command decrements it by one, the
new value of mp will be 9999.

If the contents of a memory cell will overflow due to an id command, the value will be
clamped. For example, if a memory cell currently contains 255 and the next command
increments it by one, the value will be unchanged.
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Annex B: diropqlz File Format
diropql is a minimalistic language containing only seven characters. Hence, programs in this
language can get very large. The diropqlz file format stores a compressed version of a
diropql program. Programs written in this format should be decompressed first before being
run into the compiler.

A diropqlz file is Base85 encoded so that it can be sent across channels in a
human-readable format. In addition, programs that are to be saved in this file format should
have the .dpqlz extension. To convert a diropql program into its .dpqlz equivalent, it has
to be first compressed using the obfuscator. Then, the result should be appended with
metadata in the following layout written from left to right:

● 8 bytes - 64-bit number denoting the length in bytes of the obfuscated message as
the ceiling of the number of bits divided by eight.

● 1 byte - 8-bit number denoting the number of bits to exclude or ignore starting at the
end of the obfuscated message. It should be a value between 0 and 7.

● 8 bytes - 64-bit number denoting the index that was part of the output of the𝐼
Burrows-Wheeler transform

● 16 bytes - 16 1-byte numbers corresponding to the bit lengths of the canonical
Huffman codebook derived from the encoding process. The first nine numbers
correspond to the alphabet of the run-length encoding output sorted by value. The
remaining seven numbers are reserved for future use, and should be set to zero.

● Rest of the binary bits - the obfuscated message itself

All values are written in big-endian (i.e. the most significant bit appears at the leftmost).

This final compressed output may have to be appended with bits set to 0 after the
obfuscated message to ensure that the total length of the output in bits is divisible by eight.

After the compressed program has been arranged, the program can now be encoded into
Base85. Then, a magic string (DIROPQLZ) will be prepended to the encoded program to
finish processing.
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Annex C: Burrows-Wheeler Transform
The Burrows-Wheeler transform (BWT) is a text transform invented in 1994. The transform
groups the same occurring letters via permutation.

Encoding
The most simple algorithm to do the transform is as follows:

1. Get a message and append a sentinel character to it. This sentinel is used to𝑀
denote the end of the string. In textbooks, they usually use a dollar sign ($), but the
NUL ASCII character (\0, ␀) is most practically used. From now on, this sentinel is
part of the original message .𝑀

2. Get and its other permutations by shifting to the left one letter at a𝑀 |𝑀| − 1 𝑀
time, and moving the shifted out letter to the rightmost side of . Place and the𝑀 𝑀
permutations into an array .𝑆

3. Sort in lexicographically increasing order (i.e. ascending alphabetical/ASCII value).𝑆
Let this sorted array be named .𝑆

𝑠𝑜𝑟𝑡𝑒𝑑

4. Get the last letter of each element of and concatenate them in the order in𝑆
𝑠𝑜𝑟𝑡𝑒𝑑

which permutation the letter belongs. This is now the transformed text. The index 𝐼
of the row where is is also recorded.𝑀

As an example, we have a string :𝑀

𝑀 = 𝑏𝑎𝑛𝑎𝑛𝑎𝑎𝑎! ␀

We then generate a matrix of the string with each subsequent string shifted to the left by𝑀
one and sorting them in ascending alphabetical or ASCII values. The table below shows
these matrices of strings.

Left Shifted Sorted Last Character in Sorted

bananaaa!␀ ␀bananaaa! !

ananaaa!␀b !␀bananaaa a

nanaaa!␀ba a!␀bananaa a

anaaa!␀ban aa!␀banana a

naaa!␀bana aaa!␀banan n

aaa!␀banan anaaa!␀ban n

aa!␀banana ananaaa!␀b b

a!␀bananaa bananaaa!␀ ␀
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!␀bananaaa naaa!␀bana a

␀bananaaa! nanaaa!␀ba a

Then, we get each last character of the strings in the sorted matrix and concatenate them
together to get the transformed string:

𝑉 =! 𝑎𝑎𝑎𝑛𝑛𝑏␀𝑎𝑎
𝐼 = 7

Decoding: Slow and Simple
The transform is reversible, with the simple algorithm as follows:

1. Get the transformed message and assume that it already contains the sentinel𝑉
character. Also, initialize a matrix .|𝑉| × |𝑉| 𝐶

𝐵𝑊𝑇

2. The following should be done times:|𝑉|
a. Arrange like a column vector and append it in the rightmost empty column𝑉

of .𝐶
𝐵𝑊𝑇

b. Sort in lexicographically increasing order (i.e. ascending alphabetical𝐶
𝐵𝑊𝑇

 

order/ASCII order).
3. Find the row in whose last element, or character, is the sentinel character. That𝐶

𝐵𝑊𝑇

row is the original string.

As an example, we have a transformed string :𝑉

𝑉 =! 𝑎𝑎𝑎𝑛𝑛𝑏␀𝑎𝑎

We then generate a matrix of the string with being converted into a column vector and𝑉 𝑉
sorted in ascending alphabetical order. Every after each iteration, we will append to the𝑉
left of the corresponding substrings until each of the strings in the matrix when read each
row will have a length equal to . The table below shows these matrices of strings for the|𝑉|
first five iterations. Note that the headers are annotated by iteration index and the column is
sorted if it has a suffix S attached to it.

0 0S 1 1S 2 2S 3 3S 4

! ␀ !␀ ␀b !␀b ␀ba !␀ba ␀ban !␀ban

a ! a! !␀ a!␀ !␀b a!␀b !␀ba a!␀ba

a a aa a! aa! a!␀ aa!␀ a!␀b aa!␀b

a a aa aa aaa aa! aaa! aa!␀ aaa!␀
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n a na aa naa aaa naaa aaa! naaa!

n a na an nan ana nana anaa nanaa

b a ba an ban ana bana anan banan

␀ b ␀b ba ␀ba ban ␀ban bana ␀bana

a n an na ana naa anaa naaa anaaa

a n an na ana nan anan nana anana

After a few iterations, we will be able to have a matrix of strings where each string is of
length . The last two iterations are shown below.|𝑉|

8 8S 9 9S

!␀bananaa ␀bananaaa !␀bananaaa ␀bananaaa!

a!␀banana !␀bananaa a!␀bananaa !␀bananaaa

aa!␀banan a!␀banana aa!␀banana a!␀bananaa

aaa!␀bana aa!␀banan aaa!␀banan aa!␀banana

naaa!␀ban aaa!␀bana naaa!␀bana aaa!␀banan

nanaaa!␀b anaaa!␀ba nanaaa!␀ba anaaa!␀ban

bananaaa! ananaaa!␀ bananaaa!␀ ananaaa!␀b

␀bananaaa bananaaa! ␀bananaaa! bananaaa!␀

anaaa!␀ba naaa!␀ban anaaa!␀ban naaa!␀bana

ananaaa!␀ nanaaa!␀b ananaaa!␀b nanaaa!␀ba

The inverse transform of is the string at the last column of the table where the ␀ character𝑉
is at the very end.

𝑀 = 𝑏𝑎𝑛𝑎𝑛𝑎𝑎𝑎! ␀

Decoding: Following the Indices

The previously outlined algorithm is simple to implement but takes around time to𝑂(𝑛2 𝑙𝑔 𝑛)
process (using sorting done times), which will scale up quite fast especially if the𝑂(𝑛 𝑙𝑔 𝑛) 𝑛
strings get very long. There is actually a way to be able to derive the inverse transform
faster using the index by looking at the relation between the rotated strings during left𝐼
shifting and the resulting sorted strings. The algorithm is as follows:
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1. Create an array of 2-ary tuples with each element containing , with𝑇 (𝑉[𝑖],  𝑖) 𝑉[𝑖]
being a letter in the transformed string and the zero-indexed position where it𝑉 𝑖
appears, respectively.

2. Sort using radix sort in ascending first element, then finally in ascending second𝑇
element.

3. Create a new array from the second values of each element in the sorted tuple𝐿
array . contains the amount of left shift of the original string .𝑇 𝐿 𝑀

4. Initialize a value denoting the current index under consideration. Its initial value𝐿
𝑖𝑑𝑥

is the index supplied during the Burrows-Wheeler Transform.𝐼
5. For a loop iterating times|𝑉|

a. Get , or the left shift at that index.𝐿[𝐿
𝑖𝑑𝑥

]

b. Push the character corresponding to the index to the original string𝑉[𝐿[𝐿
𝑖𝑑𝑥

]]

.𝑀
c. Set the new to be equal to .𝐿

𝑖𝑑𝑥
𝐿[𝐿

𝑖𝑑𝑥
]

6. will now contain the original string.𝑀

As an example, we have a transformed string and the index provided by the𝑉 𝐼
Burrows-Wheeler Transform:

𝑉 =! 𝑎𝑎𝑎𝑛𝑛𝑏␀𝑎𝑎
𝐼 = 7

We then create a list of tuples , sort them accordingly, and get their respective second𝑇
elements to get the list of left shifts .𝐿

T unsorted !
0

a
1

a
2

a
3

n
4

n
5

b
6

␀

7
a
8

a
9

T sorted ␀

7
!
0

a
1

a
2

a
3

a
8

a
9

b
6

n
4

n
5

L 7 0 1 2 3 8 9 6 4 5

Then, we initialize and iterate through a loop times, replacing with𝐿
𝑖𝑑𝑥

= 7 |𝑉| 𝐿
𝑖𝑑𝑥

𝐿[𝐿
𝑖𝑑𝑥

]

after each iteration. Before replacing, the character in at position is pushed into an𝑉 𝐿[𝐿
𝑖𝑑𝑥

]

array that will contain the original message. The progression of the loop is shown below:𝑀

i Lidx L at Lidx V at Lidx M

0 7 6 b b
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1 6 9 a a

2 9 5 n n

3 5 8 a a

4 8 4 n n

5 4 3 a a

6 3 2 a a

7 2 1 a a

8 1 0 ! !

9 0 7 ␀ ␀

Note that at the last iteration, should have the same value as the index . The𝐿
𝑖𝑑𝑥

𝐼

transformed message is therefore:

𝑀 = 𝑏𝑎𝑛𝑎𝑛𝑎𝑎𝑎! ␀

The transform can be immediately made from a suffix array. A suffix array of a string is a𝑀
1D array consisting of the indices of the starting character of a suffix in . The suffixes are𝑀
sorted by increasing alphabetical order and then by increasing length. The BWT of the
string is the corresponding index of the character pointed to by the suffix array.
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Annex D: DC3/skew Algorithm
The DC3 (difference cover mod 3) algorithm builds the suffix array of a string in around
linear time. It looks at the characters in the string by threes and does a recursive sort and
merge routine to build the array.

The algorithm is recursive, with each recursion following the three steps outlined below.
Note that the recursion only happens under certain circumstances.

1. Find and sort order𝑅
1,2

2. Find and sort order𝑅
0

3. Merge and order𝑅
0

𝑅
1,2

For subsequent discussion in this algorithm, the original string will be saved in an array ,𝑇
which is the integer representation (ASCII) of each character in the string.

Finding and Sorting R12 Order
The order looks into every other first or second index of a string and collates a triplet of𝑅

1,2

the three characters starting at those indices. The algorithm to find the order is as follows:

1. Append three zeros at the end of the .𝑇
2. Get a list of indices denoting the indices of whose modulo against 3 is not𝑅

1,2,𝑖𝑑𝑥
𝑇

zero and the index is at most three less from the length of the string, or
.𝑅

1,2,𝑖𝑑𝑥
+ 3 ≤ |𝑇|

3. Sort by putting those whose modulo is one before those whose modulo is𝑅
1,2,𝑖𝑑𝑥

two, breaking ties by sorting by ascending values.

4. For each index in , get three contiguous values in starting from index𝑟
1,2

(𝑖) 𝑅
1,2,𝑖𝑑𝑥

𝑇

. This is the same as getting a slice of . Save each slice in𝑟
1,2

(𝑖) 𝑇[𝑟
1,2

(𝑖).. 𝑟
1,2

(𝑖) + 3] 𝑇

an array 𝑅
1,2,𝑠𝑡𝑟

5. Do a radix sort on by sorting the slices against their first values, then by their𝑅
1,2,𝑠𝑡𝑟

second values, and finally by their last value.
6. If there are ties in the sorting against all of the values in , we recursively have𝑅

1,2,𝑠𝑡𝑟

to find a new order.𝑅
1,2

7. Otherwise, the corresponding in the sorted is the desired order.𝑅
1,2,𝑖𝑑𝑥

𝑅
1,2,𝑠𝑡𝑟

𝑅
1,2

As an example, we have a string of length 10:𝑀

𝑀 = 𝑏𝑎𝑛𝑎𝑛𝑎𝑎𝑎! ␀
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The equivalent integer representation of this string is shown below. Note that we have
already appended the required three extra zeros at the end, and for easier reading, the
indices are also annotated.

M b a n a n a a a ! ␀

T 98 97 110 97 110 97 97 97 33 0 0 0 0

idx 0 1 2 3 4 5 6 7 8 9 10 11 0

Next, we get and process the array and get the corresponding triplets as shown𝑅
1,2,𝑖𝑑𝑥

below:

R12 index unsorted 1 2 4 5 7 8 10

R12 index sorted 1 4 7 10 2 5 8

R12 str unsorted 97
110
97

110
97
97

97
33
0

0
0
0

110
97
110

97
97
97

33
0
0

Then, we sort the array while keeping track of which each triplet belongs to.𝑅
1,2,𝑠𝑡𝑟

𝑅
1,2,𝑖𝑑𝑥

R12 str index unsorted 1 4 7 10 2 5 8

R12 str unsorted 97
110
97

110
97
97

97
33
0

0
0
0

110
97
110

97
97
97

33
0
0

R12 str index sorted 10 8 7 5 1 4 2

R12 str sorted 0
0
0

33
0
0

97
33
0

97
97
97

97
110
97

110
97
97

110
97
110

Since we do not have ties in the sorted order, we will not recursively run the algorithm.
Instead, we get the now sorted from the radix sort and treat it as the desired𝑅

1,2,𝑖𝑑𝑥
𝑅

1,2

order.

𝑅
1,2

= [10, 8, 7, 5, 1, 4, 2]
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Finding and Sorting R0 Order
The order looks into the indices of a string not considered during finding of the order𝑅

0
𝑅

1,2

and collates a 2-ary tuple. Note that knowledge of is required. The algorithm to find the𝑅
1,2

order is as follows:

1. Get a list of indices denoting the indices of whose modulo against 3 is zero𝑅
0,𝑖𝑑𝑥

𝑇

and the index is at most three less from the length of the string, or .𝑅
0,𝑖𝑑𝑥

+ 3 ≤ |𝑇|

2. For each index in , get the value of at that index, collate it into a tuple𝑟
0

(𝑖) 𝑅
0,𝑖𝑑𝑥

𝑇

, and push it into an array .(𝑇[𝑟
0

(𝑖)],  𝑟
0

(𝑖)) 𝑅
0,𝑠𝑡𝑟

3. Do a radix sort on by sorting the slices against their first values.𝑅
0,𝑠𝑡𝑟

4. If there are ties in the sorting against the first value in , then for each tie lumped𝑅
0,𝑠𝑡𝑟

as a bucket:
a. Add one to their second value, find their corresponding positions in , and𝑅

1,2

replace their corresponding first values with these positions plus one.
b. Sort the bucket.

5. Get the last value of each tuple in the sorted and push them into an array .𝑅
0,𝑠𝑡𝑟

𝑅
0

contains the desired order.𝑅
0

𝑅
0

Continuing the previous example, we get and process the array and get the𝑅
0,𝑖𝑑𝑥

corresponding tuples as shown below:

R0 index 0 3 6 9

T[R0 index] 98 97 97 0

R0 str 98
0

97
3

97
6

0
9

Then, we sort the array to get the following progression𝑅
0,𝑠𝑡𝑟

R0 str unsorted 98
0

97
3

97
6

0
9

R0 str sorted 0
9

97
3

97
6

98
0

As shown, the indices at 3 and 6 have the same first values. Therefore, a tie-breaking𝑅
0

sort is needed against these two values. We will then replace these tuples in this manner:
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R0 str sorted 97
3

97
6

R0 str[1] plus one 4 7

Position of R0 str[1] in R12 5 2

New R0 str sorted 6
3

3
6

Now, we can sort the tied tuples accordingly. With this, we can now derive the indices by𝑅
0

getting the second element of each tuple.

R0 str unsorted 98
0

6
3

3
6

0
9

R0 str sorted 0
9

3
6

6
3

98
0

R0 9 6 3 0

The index is therefore:𝑅
0

𝑅
0

= [9, 6, 3, 0]

Merging R0 and R12
After getting the orders, we are now ready to merge these two arrays and build the resulting
suffix array. Merging also needs the knowledge of and . The algorithm is as follows:𝑇

1. Initialize two pointers and corresponding to the current index in and𝑟
0,𝑛𝑜𝑤

𝑟
1,2,𝑛𝑜𝑤

𝑅
0

that we are comparing for merging. These are set to zero, corresponding to𝑅
1,2

them starting at the leftmost of each array.
2. Check the first element of and , and delete or ignore the element whose value𝑅

0
𝑅

1,2

is greater or equal to the length of . This is the same as setting either or𝑇 𝑟
0,𝑛𝑜𝑤

to one.𝑟
1,2,𝑛𝑜𝑤

3. For each iteration until either the value or exceeds their corresponding𝑟
0,𝑛𝑜𝑤

𝑟
1,2,𝑛𝑜𝑤

array length.
a. Compare and .𝑡

0
= 𝑇[𝑟

0,𝑛𝑜𝑤
] 𝑡

1,2
= 𝑇[𝑟

1,2,𝑛𝑜𝑤
]

i. If , push into the resulting suffix array and increment𝑡
0

< 𝑡
1,2

𝑅
0
[𝑟

0,𝑛𝑜𝑤
]

.𝑟
0,𝑛𝑜𝑤
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ii. If , push into the resulting suffix array and𝑡
0

> 𝑡
1,2

𝑅
1,2

[𝑟
1,2,𝑛𝑜𝑤

]

increment .𝑟
1,2,𝑛𝑜𝑤

iii. Otherwise, if , compare the relative positions of𝑡
1,2

 𝑚𝑜𝑑 3 = 1 𝑡
0

+ 1

and in .𝑡
1,2

+ 1 𝑅
1,2

1. If comes first (i.e. has a lower index), then push𝑡
0

+ 1

into the resulting suffix array and increment .𝑅
0
[𝑟

0,𝑛𝑜𝑤
] 𝑟

0,𝑛𝑜𝑤

2. Otherwise, if comes first (i.e. has a lower index), then𝑡
1,2

+ 1

push into the resulting suffix array and increment𝑅
1,2

[𝑟
1,2,𝑛𝑜𝑤

]

.𝑟
1,2,𝑛𝑜𝑤

iv. Otherwise, if , do the same steps starting at 3.a except𝑡
1,2

 𝑚𝑜𝑑 3 = 2

that and . If they are still the𝑡
0

= 𝑇[𝑟
0,𝑛𝑜𝑤

+ 1] 𝑡
1,2

= 𝑇[𝑟
1,2,𝑛𝑜𝑤

+ 1]

same, then we compare the relative positions of and in𝑡
0

+ 2 𝑡
1,2

+ 2

.𝑅
1,2

4. If is less than the length of , append the slice to the suffix array.𝑟
0,𝑛𝑜𝑤

𝑅
0

𝑅
0
[𝑟

0,𝑛𝑜𝑤
..]

5. If is less than the length of , append the slice to the suffix𝑟
1,2,𝑛𝑜𝑤

𝑅
1,2

𝑅
1,2

[𝑟
1,2,𝑛𝑜𝑤

..]

array.

Continuing the previous example, we have the following orders:

𝑅
0

= [9, 6, 3, 0]

𝑅
1,2

= [10, 8, 7, 5, 1, 4, 2]

For reference, we will also be presenting the original string …𝑇

M b a n a n a a a ! ␀

T 98 97 110 97 110 97 97 97 33 0 0 0 0

idx 0 1 2 3 4 5 6 7 8 9 10 11 0

… and the sorted according to the radix sort applied on .𝑅
1,2,𝑖𝑑𝑥

𝑅
1,2,𝑠𝑡𝑟

R12 str index sorted 10 8 7 5 1 4 2

The excess index is located as the first element of , so we ignore it and set the merging𝑅
1,2

pointer to its second element. Then, we proceed with the merging as follows:𝑟
1,2,𝑛𝑜𝑤
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i R0 R12 T[r0] vs
T[r12]

r12
mod
3

r0 + 1
vs r12 +
1 index
in R12

T[r0 + 1]
vs T[r12
+ 1]

r0 +2 vs
r12 + 2
index in
R12

Suffix Array

0 9 <-
6
3
0

10
8 <-
7
5
1
4
2

0 vs 33 9

1 9
6 <-
3
0

10
8 <-
7
5
1
4
2

97 vs 33 9
8

2 9
6 <-
3
0

10
8
7 <-
5
1
4
2

97 vs 97 1 2 vs 1 9
8
7

3 9
6 <-
3
0

10
8
7
5 <-
1
4
2

97 vs 97 2 97 vs 97 1 vs 2 9
8
7
6

4 9
6
3 <-
0

10
8
7
5 <-
1
4
2

97 vs 97 2 110 vs 97 9
8
7
6
5

5 9
6
3 <-
0

10
8
7
5
1 <-

97 vs 97 1 5 vs 6 9
8
7
6
5

CoE 164 2s2223 MidP | Page 14 of 33



4
2

3

5 9
6
3
0 <-

10
8
7
5
1 <-
4
2

98 vs 97 9
8
7
6
5
3
1

6 9
6
3
0 <-

10
8
7
5
1
4 <-
2

98 vs 110 9
8
7
6
5
3
1
0

F 9
6
3
0
<-

10
8
7
5
1
4 <-
2

9
8
7
6
5
3
1
0
4
2

At iteration 0, the values of at indices 9 ( ) and 8 ( ) are 0 and 33, respectively. Since𝑇 𝑅
0

𝑅
1,2

these values are not equal, we can push the index whose corresponding value in is𝑇
smaller (8, belonging to ) to the suffix array.𝑅

1,2

At iteration 2, the values of at indices 6 ( ) and 7 ( ) are the same (97), so we have to𝑇 𝑅
0

𝑅
1,2

compare the next indices 7 and 8. Since the original index we are comparing from is 7𝑅
1,2

and , we can compare the positions of the next indices 7 and 8 against their7 𝑚𝑜𝑑 3 = 1
positions in , which are at 2 and 1, respectively. Now, we can push the index whose𝑅

1,2

corresponding position in is smaller, which is 7 in this case.𝑅
1,2

At iteration 3, the values of at indices 6 ( ) and 5 ( ) are the same (97), so we have to𝑇 𝑅
0

𝑅
1,2

compare the next indices 7 and 6. Since the original index we are comparing from is 5𝑅
1,2

and , we have to compare the correspondings values of at these next indices.5 𝑚𝑜𝑑 3 = 2 𝑇
It just happened that the values of at indices 7 and 6 are the same (97) too! So, we𝑇
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compare the next indices 8 and 7 against their positions in , which are 1 and 2,𝑅
1,2

respectively. Now, we can push the index whose corresponding position in is smaller,𝑅
1,2

which is 6 in this case.

At iteration 4, the values of at indices 3 ( ) and 5 ( ) are the same (97), so we have to𝑇 𝑅
0

𝑅
1,2

compare the next indices 4 and 6. Since the original index we are comparing from is 5𝑅
1,2

and , we have to compare the correspondings values of at these next indices,5 𝑚𝑜𝑑 3 = 2 𝑇
which are 110 and 97, respectively. Since these values are not equal, we can push the
index whose corresponding value in is smaller (5, belonging to ) to the suffix array.𝑇 𝑅

1,2

The final suffix array of the original message is, therefore:

𝑉 = [9, 8, 7, 6, 5, 3, 1, 0, 4, 2]

Suffix Array and Burrows-Wheeler Transform
The Burrows-Wheeler transform of a string can be trivially derived from its suffix array. The
algorithm is as follows:

1. Get the original string and its suffix array .𝑀 𝑉
2. Subtract each value in by one.𝑉
3. For each element in , find the corresponding th character in and push them𝑣 𝑉 𝑣 𝑀

into an array . If is negative, then get the ( )th character from the end of𝑉" 𝑣 − 𝑣 − 1
. Note that positions are zero-indexed.𝑀

4. now contains the transformed string.𝑉"

As an example, we have the following message and its corresponding suffix array .𝑀 𝑉

𝑀 = 𝑏𝑎𝑛𝑎𝑛𝑎𝑎𝑎! ␀
𝑉 = [9, 8, 7, 6, 5, 3, 1, 0, 4, 2]

We subtract each element in by one and map the resulting elements against the character𝑉
at those positions in , noting that negative indices are interpreted as the position from the𝑀
end of . The resulting array of characters, and conversely the Burrows-Wheeler Transform𝑀
of the message , is therefore:𝑀

𝑉" =! 𝑎𝑎𝑎𝑛𝑛𝑏␀𝑎𝑎

Recursive DC3 Algorithm
The previous example shows the DC3 algorithm without recursion during finding of the 𝑅

1,2

order. For another example that has recursion, please see the example document for it.

CoE 164 2s2223 MidP | Page 16 of 33



Annex E: Move-To-Front Transform
The second algorithm is the move-to-front transform, which is a simple transform relying on
the fact that the characters appearing the most in a text are "used" more frequently. If a text
is read from left to right, it makes sense to move these characters at the beginning once
they appear.

Encoding
The transformation algorithm is as follows:

1. Initialize a list of characters used in the text called the alphabet . The characters inΣ
it should have been pre-sorted in alphabetical order.

2. Initialize the output queue where the transformed string will be placed.𝑆
3. Get a message and do the following times, for each character in𝑀 |𝑀| 𝑚

𝑖
𝑀

a. Find the index from zero of in . Push this index into .𝑚
𝑖

Σ 𝑆

b. Remove that same character from and reinsert it at the front of .Σ Σ
4. The transformed text is given as a series of numbers contained in .𝑆

As an example, we have a string :𝑀

𝑀 = 𝑏𝑎𝑛𝑎𝑛𝑎𝑎𝑎! ␀

We let be the sentinel character as described in Annex A (BWT). Getting the unique␀

characters and sorting them in ascending ASCII value will yield the ordered set alphabet :Σ

Σ = {␀,!, 𝑎, 𝑏, 𝑛}

Now, we let the ordered set contain the transformed message . We start with the first𝑆 𝑀
character in and see that it is the 3rd character (starting from zero) in . will now𝑀 Σ 𝑆
currently have the value and will be changed such that this third character is𝑆 = {3} Σ
moved at the very front of so that the new becomes .Σ Σ = {𝑏, ␀,!, 𝑎, 𝑛}

Going through each character of , we get the following progression:𝑀

Iteration
Index 𝑖

Letter in
Message 𝑀

𝑖

Current
Alphabet Σ

𝑖

Transformed Message 𝑆 New Alphabet
Σ

𝑖+1

0 b ␀, !, a, b, n 3 b, ␀, !, a, n

1 a b, ␀, !, a, n 3, 3 a, b, ␀, !, n

2 n a, b, ␀, !, n 3, 3, 4 n, a, b, ␀, !

3 a n, a, b, ␀, ! 3, 3, 4, 1 a, n, b, ␀, !
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4 n a, n, b, ␀, ! 3, 3, 4, 1, 1 n, a, b, ␀, !

5 a n, a, b, ␀, ! 3, 3, 4, 1, 1, 1 a, n, b, ␀, !

6 a a, n, b, ␀, ! 3, 3, 4, 1, 1, 1, 0 a, n, b, ␀, !

7 a a, n, b, ␀, ! 3, 3, 4, 1, 1, 1, 0, 0 a, n, b, ␀, !

8 ! a, n, b, ␀, ! 3, 3, 4, 1, 1, 1, 0, 0, 4 !, a, n, b, ␀

9 ␀ !, a, n, b, ␀ 3, 3, 4, 1, 1, 1, 0, 0, 4, 4 ␀, !, a, n, b

The transformed message is therefore encoded as the sequence:

𝑆 = {3,  3,  4,  1,  1,  1,  0,  0,  4,  4}

Decoding
The transform is reversible using the following algorithm:

1. Find a way to get a hold of the original pre-sorted alphabet used in theΣ
transformation algorithm above.

2. Initialize the output queue where the transformed string will be placed.𝑀
3. Get an array of numbers and do the following times, for each value in𝑆 |𝑆| 𝑠

𝑖
𝑆

a. Get the character in corresponding to the index . Push this character intoΣ 𝑠
𝑖

.𝑀
b. Remove that same character from and reinsert it at the front of .Σ Σ

4. The transformed text is given as a series of characters contained in .𝑀

As an example, we have the following sequence encoded using move-to-front transform:

𝑆 = {3,  3,  4,  1,  1,  1,  0,  0,  4,  4}

The original alphabet was also reconstructed or received as:

Σ = {␀,!, 𝑎, 𝑏, 𝑛}

Now, we let contain the reconstructed message from . We start with the first value in ,𝑀 𝑆 𝑆
treating it as an index, and looking up the corresponding character at that index (starting
from zero) in . will now currently have the value and will be changed such thatΣ 𝑀 𝑀 = 𝑏 Σ
this third character is moved at the very front of so that the new becomes .Σ Σ = {𝑏, ␀,!, 𝑎, 𝑛}

Going through each value in , we get the following progression:𝑆
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Iteration
Index 𝑖

Value in
Sequence 𝑆

𝑖

Current
Alphabet Σ

𝑖

Reconstructed Message
𝑀

New Alphabet
Σ

𝑖+1

0 3 ␀, !, a, b, n b b, ␀, !, a, n

1 3 b, ␀, !, a, n ba a, b, ␀, !, n

2 4 a, b, ␀, !, n ban n, a, b, ␀, !

3 1 n, a, b, ␀, ! bana a, n, b, ␀, !

4 1 a, n, b, ␀, ! banan n, a, b, ␀, !

5 1 n, a, b, ␀, ! banana a, n, b, ␀, !

6 0 a, n, b, ␀, ! bananaa a, n, b, ␀, !

7 0 a, n, b, ␀, ! bananaaa a, n, b, ␀, !

8 4 a, n, b, ␀, ! bananaaa! !, a, n, b, ␀

9 4 !, a, n, b, ␀ bananaaa!␀ ␀, !, a, n, b

The reconstructed message is therefore:

𝑀 = 𝑏𝑎𝑛𝑎𝑛𝑎𝑎𝑎! ␀

MTF in diropqlz
When implementing this as part of diropqlz compression, the initial alphabet used shouldΣ
be the seven letters sorted in ascending order of their ASCII values .Σ = {𝑑, 𝑖, 𝑙, 𝑜, 𝑝, 𝑞, 𝑟}
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Annex F: Run-Length Encoding
The third algorithm is run-length encoding, which is another simple transform that encodes
a series of the exact same characters as the number of occurrences. Using the previous
transforms, the currently compressed data (as an array of numbers) may have a long run of
zeros

Encoding
We can use the following algorithm to further compress the data:

1. Initialize a counter , which counts the current number of zeros that will be𝑁
𝑧𝑒𝑟𝑜

encountered during the encoding process. Its value should initially be zero.
2. Initialize an output queue where the encoded data will be stored.𝐿
3. Get an array of numbers and do the following times, for each value in𝑆 |𝑆| + 1 𝑠

𝑖
𝑆

a. Check whether the current loop index is not greater than and is𝑖 |𝑆| − 1 𝑠
𝑖

zero.
i. If it is, increment .𝑁

𝑧𝑒𝑟𝑜

ii. Otherwise,
1. Convert into binary and add one. Push each digit starting𝑁

𝑧𝑒𝑟𝑜

from the least significant bit into except the most significant𝐿
bit.

2. Reset to zero.𝑁
𝑧𝑒𝑟𝑜

3. Finally, push into if exists.𝑠
𝑖

+ 2 𝐿 𝑠
𝑖

4. If is not empty, do the same steps as in 3.a.ii.𝑁
𝑧𝑒𝑟𝑜

As an example, we have the following sequence :𝑆

𝑆 = {3,  3,  4,  1,  1,  1,  0,  0,  4,  4}

Now, we let contain the encoded sequence from and . We start with the first𝐿 𝑆 𝑁
𝑧𝑒𝑟𝑜

= 0

value in and checking whether it is a zero. Since it is not, we can already append its value𝑆
plus two directly to and will now currently have the value .𝐿 𝐿 = {5}

Going through each value in , we get the following progression:𝑆

Iteration
Index 𝑖

Value in
Sequence
𝑆

𝑖

Current
number of
zeros 𝑁

𝑧𝑒𝑟𝑜

New
number of
zeros 𝑁

𝑧𝑒𝑟𝑜

Encoded Sequence 𝐿

0 3 0 0 5

1 3 0 0 5, 5
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2 4 0 0 5, 5, 6

3 1 0 0 5, 5, 6, 3

4 1 0 0 5, 5, 6, 3, 3

5 1 0 0 5, 5, 6, 3, 3, 3

6 0 0 1 5, 5, 6, 3, 3, 3

7 0 1 2 5, 5, 6, 3, 3, 3

8 4 2 0 5, 5, 6, 3, 3, 3, 1, 6

9 4 0 0 5, 5, 6, 3, 3, 3, 1, 6, 6

10 0 0 5, 5, 6, 3, 3, 3, 1, 6, 6

At iteration index 6, note that the current value we are looking for in is a zero. Therefore,𝑆
we will not append anything to , but we will increment by one.𝐿 𝑁

𝑧𝑒𝑟𝑜

At iteration index 8, note that the current value we are looking for in is not a zero. In𝑆
addition, is greater than one. Hence, we will convert to its binary form (𝑁

𝑧𝑒𝑟𝑜
𝑁

𝑧𝑒𝑟𝑜
+ 1

) and append each digit starting from the rightmost digit to except the most3
10

= 11
2

𝐿

significant 1 bit. Finally, we reset the value of to zero. After this, don't forget to append𝑁
𝑧𝑒𝑟𝑜

the current value of plus one!𝑆

At iteration 10, note that the sequence has already ended in iteration 9. However, this extra
iteration is needed so that if is a nonzero value, we can append it at the end of .𝑁

𝑧𝑒𝑟𝑜
𝐿

The transformed message is therefore encoded as the sequence:

𝐿 = {5, 5, 6, 3, 3, 3, 1, 6, 6}

Decoding
The transform is reversible using the following algorithm:

1. Initialize a stack , which will contain the binary representation of the current𝑁
𝑧𝑒𝑟𝑜

number of zeros that were encoded during the encoding process. Its value should
initially be zero.

2. Initialize an output queue where the decoded data will be stored.𝑆
3. Get an array of numbers and do the following times, for each value in𝐿 |𝐿| + 1 𝑎

𝑖
𝐿

a. Check whether the current loop index is not greater than and𝑖 |𝐿| − 1
whether is zero or one.𝑎

𝑖
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i. If it is, prepend (push at start of) into .𝑎
𝑖

𝑁
𝑧𝑒𝑟𝑜

ii. Otherwise,
1. Prepend a one into , convert it into its decimal equivalent,𝑁

𝑧𝑒𝑟𝑜

and subtract by one.
2. Push the appropriate number of zeros equivalent to the new

amount to .𝑁
𝑧𝑒𝑟𝑜

𝑆

3. Reset to zero.𝑁
𝑧𝑒𝑟𝑜

4. Finally, push into if exists.𝑎
𝑖

− 2 𝐿 𝑎
𝑖

4. If is not empty, do the same steps as in 3.a.ii.𝑁
𝑧𝑒𝑟𝑜

As an example, we have the following sequence encoded using run-length encoding:𝐿

𝐿 = {5, 5, 6, 3, 3, 3, 1, 6, 6}

Now, we let contain the reconstructed sequence from and . We start with the𝑆 𝐿 𝑁
𝑧𝑒𝑟𝑜

= 0

first value in and checking whether it is greater than one. Since it is, we can already𝐿
append its value minus two directly to and will now currently have the value .𝑆 𝑆 = {3}

Going through each value in , we get the following progression:𝐿

Iteration
Index 𝑖

Value in
Sequence
𝐿

𝑖

Current
binary
digits of
𝑁

𝑧𝑒𝑟𝑜

Current
decimal
number of
zeros
𝑁

𝑧𝑒𝑟𝑜
+ 1

New
binary
digits of
𝑁

𝑧𝑒𝑟𝑜

Reconstructed
Sequence 𝑆

0 5 0 0 0 3

1 5 0 0 0 3, 3

2 6 0 0 0 3, 3, 4

3 3 0 0 0 3, 3, 4, 1

4 3 0 0 0 3, 3, 4, 1, 1

5 3 0 0 0 3, 3, 4, 1, 1, 1

6 1 0 0 1 3, 3, 4, 1, 1, 1

7 6 1 3 0 3, 3, 4, 1, 1, 1, 0, 0, 4

8 6 0 0 0 3, 3, 4, 1, 1, 1, 0, 0, 4, 4

9 0 0 0 3, 3, 4, 1, 1, 1, 0, 0, 4, 4
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At iteration index 6, note that the current value we are looking for in is one. Therefore, we𝑆
will not append anything to , but we will treat this digit as a binary digit and push it into𝐿

.𝑁
𝑧𝑒𝑟𝑜

At iteration index 7, note that the current value we are looking for in is greater than one. In𝑆
addition, is greater than one. Hence, we will push a 1 into , reverse the digits and𝑁

𝑧𝑒𝑟𝑜
𝑁

𝑧𝑒𝑟𝑜

add one to get the true binary form ( ). We then convert it to its decimal equivalent3
10

= 11
2

and append zeros to . Finally, we reset the value of to zero. After this, don't𝑁
𝑧𝑒𝑟𝑜

− 1 𝑆 𝑁
𝑧𝑒𝑟𝑜

forget to append the current value of minus one!𝐿

At iteration 9, note that the sequence has already ended in iteration 8. However, this extra
iteration is needed so that if is a nonzero value, we can append the appropriate𝑁

𝑧𝑒𝑟𝑜

number of zeros at the end of .𝑆

The reconstructed sequence is therefore:

𝑆 = {3,  3,  4,  1,  1,  1,  0,  0,  4,  4}

CoE 164 2s2223 MidP | Page 23 of 33



Annex G: Huffman Encoding
The final algorithm is variable-length encoding, which is a common transform that encodes
all characters in a message into different binary codewords of variable lengths. Characters
that more frequently show up are assigned to shorter codewords while those that rarely
appear are assigned to longer codewords. A well-known variable length encoder is the
Huffman encoder, which was published in 1952.

Huffman Tree Building
Encoding messages using Huffman encoding utilizes a greedy approach by building a
binary tree based on the frequency of the characters that appear in the message. The
algorithm for building the tree and encoding map is as follows:

1. Get all of the values uniquely used in the message . Push them into a priority queue𝐶
of nodes, with each value as its own (leaf) node, and where the frontmost element𝑄

of it will be the least frequent value, breaking ties with the value itself.
2. Do the following until has a single element.𝑄

a. Get the first two elements of .𝑄
b. Create a new node from them with these two elements as its children. The

frontmost of the two is the left child, and the other is the right child.
c. Set the frequency of the new node to the sum of the frequencies of the two

child elements.
d. Push this new node into .𝑄

As an example, we have the following sequence :𝐶

𝐶 = {5, 5, 6, 3, 3, 3, 1, 6, 6}

We get the unique values in and find the frequency of each appearing in it to yield the𝐶
following forest of nodes:

Next, we sort them in increasing frequency, and then increasing value from left to right. We
can think of it as these forest of nodes pushed into the priority queue , which will𝑄
automatically sort them. This will yield:
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We then start by getting the two leftmost nodes and "merging" them by making a "dummy"
node whose value is -1 (or any "null" value) and frequency being the sum of the frequencies
of these two leftmost nodes. Then, we connect the leftmost of the two nodes to the left of
this dummy node and the other one to the right.

Repeating the same process as outlined above, we sort the nodes in the uppermost row in
increasing frequency, and then increasing value. Then, we merge the two leftmost nodes to
yield the following arrangement:

Another repetition of the same process will yield the Huffman tree corresponding to the
sequence :𝐶

Codeword Mapping
Let the single tree left in be the encoding tree that will be used to encode the message.𝑇 𝑄
To find the Huffman codeword for the character using :𝑇
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1. Initialize a codeword stack where the codeword digits will be stored.𝑆
2. Push 2 into . Note that this value will not be part of the binary codeword.𝑆
3. Start at the root node of .𝑇
4. Do the following until is empty:𝑆

a. If the current node is not a leaf node (i.e. has a character), traverse downward
to the left and push a 0 into .𝑆

b. If the current node contains the character, then skip to step (4).
c. Otherwise, if we have already visited the left, but we have not yet done so to

the right:
i. Pop one digit off of and discard it.𝑆
ii. Traverse downward to the right and push a 1 into .𝑆

d. Otherwise, if we have already visited the right, too:
i. Pop two digits off of .𝑆

5. Remove the first element from and it will now contain the binary codeword.𝑆

As an example, we have the following Huffman tree with each node labeled with a letter for
reference:

We will traverse the tree in preorder, which will process a node recursively in this order:
current, left, right. For the example tree, the nodes will be visited in this order: a, b, c, d, f, g,
e.

We let the codeword stack be empty. Starting in node a, we first check whether the value𝑆
is not the "null" value. Since it is the "null" value, we will stop processing this node, push a
0 into and go to node b.𝑆

Once we reach node f, will have the value . Since it has a non-"null" value, we𝑆 𝑆 = 100
2

save the current value of and the value in this node to some keyed map (e.g. a hashmap).𝑆
Then, since f does not have children, we go up the tree by one level and visit the right node.
This requires popping off the rightmost digit in and pushing one to it.𝑆
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Going through each node in the prescribed visitation order, we get the following
progression:

Iteration
Index 𝑖

Currently
Visited
Node

Current
Codeword
Digits in 𝑆

Current Value in Node Mapped Binary
Codeword

0 a 2 -1

1 b 2, 0 6 0

2 c 2, 1 -1

3 d 2, 1, 0 -1

4 f 2, 1, 0, 0 1 100

5 g 2, 1, 0, 1 5 101

6 e 2, 1. 1 3 11

The value to binary codeword mappings are as follows:

● 1 - 100
● 3 - 11
● 5 - 101
● 6 - 0

Encoding
Encoding a message is now straightforward by just mapping the characters to the
corresponding codewords.

As an example, we have the following sequence :𝐶

𝐶 = {5, 5, 6, 3, 3, 3, 1, 6, 6}

The value to binary codeword mappings derived from its Huffman tree are as follows:

● 1 - 100
● 3 - 11
● 5 - 101
● 6 - 0

The final encoded sequence of bits corresponding to is therefore:𝐶
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101 101 0 11 11 11 100 0 0

Decoding
On the other hand, the following algorithm can be used to decode a message encoded
using Huffman encoding:

1. Get the tree associated with encoding the message .𝑇 𝑀
2. Let be a pointer to the current node in , and be the queue that will contain the𝑡

𝑖𝑑𝑥
𝑇 𝑄

decoded message.
3. Let point to the root node of .𝑡

𝑖𝑑𝑥
𝑇

4. Do the following times, with index :|𝑀| + 1 𝑖
a. If points to a leaf node (i.e. has a character):𝑡

𝑖𝑑𝑥

i. Push the character onto .𝑄
ii. Reset to point it to the root node of .𝑡

𝑖𝑑𝑥
𝑇

b. Otherwise, if is less than .𝑖 |𝑀|
i. Let be the character in .𝑐 𝑖

𝑡ℎ
𝑀

ii. If is a zero, move to the left.𝑐 𝑡
𝑖𝑑𝑥

iii. Otherwise, if is a one, move to the right.𝑐 𝑡
𝑖𝑑𝑥

As an example, we have the following sequence of bits encoded using Huffman𝑀
encoding:

101101011111110000

Additionally, we have reconstructed or received the following Huffman tree corresponding
to this sequence of bits with each node labeled with a letter for reference:

Going through each bit in , we get the following progression:𝑀
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Iteration
Index 𝑖

Current
Bit 𝑀

𝑖

Current
Node in 𝑇

Next
Node

Value in
Next
Node

Reset
Current
Node?

Reconstructed
Message 𝑄

0 1 a c -1 No

1 0 c d -1 No

2 1 d g 5 Yes 5

3 1 a c -1 No 5

4 0 c d -1 No 5

5 1 d g 5 Yes 5, 5

6 0 a b 6 Yes 5, 5, 6

7 1 a c -1 No 5, 5, 6

8 1 c e 3 Yes 5, 5, 6, 3

9 1 a c -1 No 5, 5, 6, 3

10 1 c e 3 Yes 5, 5, 6, 3, 3

11 1 a c -1 No 5, 5, 6, 3, 3

12 1 c e 3 Yes 5, 5, 6, 3, 3, 3

13 1 a c -1 No 5, 5, 6, 3, 3, 3

14 0 c d -1 No 5, 5, 6, 3, 3, 3

15 0 d f 1 Yes 5, 5, 6, 3, 3, 3, 1

16 0 a b 6 Yes 5, 5, 6, 3, 3, 3, 1, 6

17 0 a b 6 Yes 5, 5, 6, 3, 3, 3, 1, 6, 6

We start by letting the current node be the root node a. Since the current node has a "null"
value, we then look at the first bit and traverse the tree to the left if the bit is zero, or to the
right otherwise.

At iteration 2, we note that the current node has a non-"null" value. So we push this value
into and reset the current node to the root node a.𝑄

The reconstructed sequence is therefore:

𝑄 = {5, 5, 6, 3, 3, 3, 1, 6, 6}
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Codebook Canonicalization
The codeword mapping, or codebook, can be stored as a 16-bit pair of binary codeword
and character respectively. However, if the alphabet used is known at the decoding side,
we can change the binary codewords into something such that we only need to encode the
lengths of the codewords.

To canonicalize a codebook for such mapping:

1. Sort the mappings by increasing codeword length, and then by ascending mapped
values.

2. Let the codeword of the first mapping be equal to a string of zeros of the same
length as the codeword. Let this length be equal to .𝐿

𝑐𝑎𝑛𝑜𝑛

3. Initialize a value storing the current value of the codeword to assign.𝐶
𝑐𝑎𝑛𝑜𝑛

= 0

4. For each subsequent mapping in the sorted list :𝐶
𝑜𝑙𝑑,𝑖

a. Increment by one.𝐶
𝑐𝑎𝑛𝑜𝑛

b. Check whether the codeword length of is greater than .𝐶
𝑜𝑙𝑑,𝑖

𝐿
𝑐𝑎𝑛𝑜𝑛

i. If it is, then left shift the bits of until now has the same𝐶
𝑐𝑎𝑛𝑜𝑛

𝐶
𝑐𝑎𝑛𝑜𝑛

length as . Also set to be equal to the length of .𝐶
𝑜𝑙𝑑,𝑖

𝐿
𝑐𝑎𝑛𝑜𝑛

𝐶
𝑜𝑙𝑑,𝑖

ii. Otherwise, replace with while maintaining the old𝐶
𝑜𝑙𝑑,𝑖

𝐶
𝑐𝑎𝑛𝑜𝑛

codeword length of .𝐶
𝑜𝑙𝑑,𝑖

As an example, we have the following non-canonical Huffman codebook:

● 1 - 100
● 3 - 11
● 5 - 101
● 6 - 0

We sort the codebook entries to yield:

● 6 - 0
● 3 - 11
● 1 - 100
● 5 - 101

Going through each value in the codebook will yield the following progression:

Value Old
Codeword

Current 𝐿
𝑐𝑎𝑛𝑜𝑛

Length

Current 𝐶
𝑐𝑎𝑛𝑜𝑛

Bin Value

Left Shift
Amount

New
Codeword

6 0 1 0 0 0

CoE 164 2s2223 MidP | Page 30 of 33



3 11 1 0 1 10

1 100 2 10 1 110

5 101 3 110 0 111

The new canonical codebook corresponding to the old one is therefore:

● 6 - 0
● 3 - 10
● 1 - 110
● 5 - 111

To encode the codebook for transmission, we first sort the codebook entries by ascending
mapped values. Using the canonical codebook derived earlier, the newly-sorted codebook
is as follows:

● 1 - 110
● 3 - 10
● 5 - 111
● 6 - 0

Assuming that the original message consists of the mapped values
, the codebook will be transmitted as the following sequence ofΣ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

values:

𝐶
𝑐𝑎𝑛𝑜𝑛,𝑙𝑒𝑛

= {0,  3,  0,  2,  0,  3,  1,  0,  0,  0}

This can be interpreted as such: the length of the codeword at the ith element of is theΣ
corresponding value at . So, the first element in has a codeword of length𝐶

𝑐𝑎𝑛𝑜𝑛,𝑙𝑒𝑛
Σ

. Note that the other mapped values that were not included in the final codebook𝐶
𝑐𝑎𝑛𝑜𝑛,𝑙𝑒𝑛

are encoded as having a codeword of length zero.

To reconstruct the codebook from the canonical codeword lengths:

1. Obtain the original sorted alphabet used during codebook canonicalization.Σ
2. Create a mapping of the mapped values and the codeword lengths.Σ → 𝐶

𝑐𝑎𝑛𝑜𝑛,𝑙𝑒𝑛

3. Sort the map entries in increasing codeword length, and then by ascending mapped
values.

4. Let the codeword of the first mapping be equal to a string of zeros of the specified
codeword length. Let this length be equal to .𝐿

𝑐𝑎𝑛𝑜𝑛

5. Initialize a value storing the current value of the codeword to assign.𝐶
𝑐𝑎𝑛𝑜𝑛

= 0
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6. For each subsequent mapping in the sorted list :𝐶
𝑜𝑙𝑑,𝑖

a. Increment by one.𝐶
𝑐𝑎𝑛𝑜𝑛

b. Check whether the codeword length of is greater than .𝐶
𝑜𝑙𝑑,𝑖

𝐿
𝑐𝑎𝑛𝑜𝑛

i. If it is, then left shift the bits of until now has the same𝐶
𝑐𝑎𝑛𝑜𝑛

𝐶
𝑐𝑎𝑛𝑜𝑛

length as . Also set to be equal to the length of .𝐶
𝑜𝑙𝑑,𝑖

𝐿
𝑐𝑎𝑛𝑜𝑛

𝐶
𝑜𝑙𝑑,𝑖

ii. Otherwise, replace with while maintaining the old𝐶
𝑜𝑙𝑑,𝑖

𝐶
𝑐𝑎𝑛𝑜𝑛

codeword length of .𝐶
𝑜𝑙𝑑,𝑖

As an example, we have the sequence of codeword bit lengths:

𝐶
𝑐𝑎𝑛𝑜𝑛,𝑙𝑒𝑛

= {0,  3,  0,  2,  0,  3,  1,  0,  0,  0}

Additionally, we are also given the alphabet corresponding toΣ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
these codeword lengths. Mapping these two and removing the values in whoseΣ 𝐶

𝑐𝑎𝑛𝑜𝑛,𝑙𝑒𝑛

lengths are zero yields the following mapping. Note that it is already sorted according to
increasing codeword length and then by ascending value:

● 6 - 1
● 3 - 2
● 1 - 3
● 5 - 3

Going through each value in the mapping will yield the following progression:

Value Current 𝐿
𝑐𝑎𝑛𝑜𝑛

Length

Current 𝐶
𝑐𝑎𝑛𝑜𝑛

Bin Value

Left Shift
Amount

Derived
Codeword

6 1 0 0 0

3 2 0 1 10

1 3 10 1 110

5 3 110 0 111

The reconstructed canonical codebook is therefore:

● 6 - 0
● 3 - 10
● 1 - 110
● 5 - 111
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Huffman Encoding in diropqlz
Note that as part of diropqlz compression, the Huffman decoder will receive an array of
nonnegative integer values ranging from 0 until 9 (the seven commands of diropql plus two
binary digits for the run-length encoding) corresponding to the bit lengths of the
canonicalized codebook against some alphabet. Hence, for this purpose, the initial alphabet
used should be the integers between 0 and 9 inclusive sorted in ascending order, orΣ

.Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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