
CoE 164
Computing Platforms

02a: Data Ownership

2

DATA OWNERSHIP

Rust enables programmers to access
the memory more directly than other
high-level programming languages.

Due to this power, Rust is paranoid
about data and memory safety. Most
“errors” related to data misuse and
improper cleanup are caught at
compile time.

3

PROGRAM MEMORY

Programs are usually given a
stack and a heap as memory
locations where they can store
data.

Depending on where data is
stored, Rust variables act
differently within the program.

4

The stack is where data of
a fixed size is stored. It is
usually growing "downward"
and is faster to access.

We can push data into the
stack for safekeeping.
However, we can only get
the topmost data from the
stack at any given time.

MEMORY: STACK

let a = 9;
let b = 3.14;
let c = true;

Example

9

3.14

1

Stack pointer
0xdeadbeef

8 bytes (64 bits)

0xdeadbef0
0xdeadbef8
0xdeadbf00

5

The heap* is where data of
a variable size is stored.

A space for the data should
be allocated first before
being able to save it into the
heap. Conversely, data that
will not be used anymore
should be deallocated or
freed from the heap.

MEMORY: HEAP

let dda = 3;
let a = "hi!".to_string();
let b = "zz".to_string();

Example

zzhi!

Free space
16 bytes

2 bytes

* Not to be confused with the heap data structure.

3 bytes

Start address
0xdeadbee0

6

Saving to the heap will also push
a pointer to the stack. This
pointer points to the address in
the heap where the true value of
the data can be found.

Heap data is accessed by first
looking at the pointer from the
stack, and then going to that
address in the heap.

MEMORY: HEAP

zzhi!

Free space
16 bytes

2 bytes3 bytes

Start address
0xdeadbee0

3

0xdeadbee0

0xdeadbef3

Stack pointer
0xdeadbeef

8 bytes (64 bits)

0xdeadbef0
0xdeadbef8
0xdeadbf00

H
eap

S
tack

7

OWNERSHIP RULES

Rust follows some basic rules
regarding ownership of a data.

1. Each value has an owner
2. There can only be one

owner at any given time
3. When the owner is gone

(out of scope), the value is
deleted (dropped).

8

COPY AND MOVE

Rust enables data types to have a
Copy or Move trait.

A copy implies that data of that type
is "trivially" copied and can be stored
on the stack.

A move implies that data of that type
is stored in the heap.

Exam
ple

9

By default, data types have a Move trait only. Ownership rules (1) and (2)
dictate that "passing" data from one variable to another scope or variable
moves the data to the destination. Consequently, the origin variable
becomes out of scope, and is therefore invalid.

COPY AND MOVE: MOVE

let hello = String::from("hello!");
let hello2 = hello;

println!("{hello}"); // compile error

Exam
ple

When a variable goes out of scope, Rust will call a special function named
drop where memory cleanup and deallocation happens. In general, data
types that have the Move trait should implement the Drop trait.

10

COPY AND MOVE: DROP

let hello = String::from("hello!");
let hello2 = hello;
// hello is dropped in the preceding line

println!("{hello2}");

COPY AND MOVE: MOVE

Free space

Stack pointer

Stack Heap

let hello = String::from("hello!");
let hello2 = hello;

println!("{hello}");

Example

P
ro

gr
am

 c
ou

nt
er

COPY AND MOVE: MOVE

hello

hello -> (ptr)

Stack Heap

P
ro

gr
am

 c
ou

nt
er

Stack pointer

let hello = String::from("hello!");
let hello2 = hello;

println!("{hello}");

Example

COPY AND MOVE: MOVE

hello

hello -> (ptr)

hello2 -> (ptr)

Stack pointer

Stack Heap

P
ro

gr
am

 c
ou

nt
er

let hello = String::from("hello!");
let hello2 = hello;

println!("{hello}");

Example

COPY AND MOVE: MOVE

hello

hello -> (ptr)

hello2 -> (ptr)Stack pointer

Stack Heap

P
ro

gr
am

 c
ou

nt
er

let hello = String::from("hello!");
let hello2 = hello;

println!("{hello}");

Example

COPY AND MOVE: MOVE

hello

hello2 -> (ptr)Stack pointer

Stack Heap

P
ro

gr
am

 c
ou

nt
er

let hello = String::from("hello!");
let hello2 = hello;

println!("{hello}");

Example

Exam
ple

16

Some data types have a Copy trait. "Passing" data from one scope or
variable to another copies the data to the destination "trivially". The origin
variable does not become out of scope.

COPY AND MOVE: COPY

let hello = 3;
let hello2 = hello;

println!("{hello}"); // NO compile error
println!("{hello2}"); // NO compile error

Exam
ple

17

Optionally, data types that can only be moved may have the Clone trait,
which copies both the stack and heap data to a destination. In this case,
the origin variable does not become out of scope.

Cloning is usually computationally expensive, but may be useful in many
cases.

COPY AND MOVE: CLONE

let hello = String::from("hello");
let hello2 = hello.clone();

println!("{hello}"); // NO compile error
println!("{hello2}"); // NO compile error

COPY AND MOVE: COPY

Stack pointer

Stack Heap

let hello = 3;
let hello2 = hello;

println!("{hello}");
println!("{hello2}");

Example

P
ro

gr
am

 c
ou

nt
er

COPY AND MOVE: COPY

hello -> 3Stack pointer

Stack Heap

P
ro

gr
am

 c
ou

nt
er

let hello = 3;
let hello2 = hello;

println!("{hello}");
println!("{hello2}");

Example

COPY AND MOVE: COPY

hello -> 3

hello2 -> 3Stack pointer

Stack Heap

P
ro

gr
am

 c
ou

nt
er

let hello = 3;
let hello2 = hello;

println!("{hello}");
println!("{hello2}");

Example

COPY AND MOVE: COPY

hello -> 3

hello2 -> 3

Stack pointer

Stack Heap

P
ro

gr
am

 c
ou

nt
er

let hello = 3;
let hello2 = hello;

println!("{hello}");
println!("{hello2}");

Example

22

Copy

◦ Integers (signed and unsigned)
◦ Boolean
◦ Floating-point types
◦ Character
◦ Tuples whose every element

has a Copy trait

COPY AND MOVE: DATA TYPES

Move

◦ Assume everything else

Example

23

The Move and Copy traits are also
applicable when passing data to
functions.

For data types with the Move trait,
the function takes ownership of the
passed data, rendering the origin
variable out of scope.

OWNERSHIP: FUNCTIONS

fn take(s: String) {
 println!("{s}");
}

fn take_copy(d: i64) {
 println!("{d}");
}

let s = String::from("z");
let d = 7;

take(s);
take_copy(d);

// compile error
println!("{s}");
println!("{d}"); // OK

Example

24

Functions can also give ownership of
data via return values. Although the
function becomes out of scope, the
data itself is not dropped due to the
transfer.

Similarly, we can pass data to
functions, which they can
consequently return once it returns.
This borrowing is a common
procedure in Rust.

OWNERSHIP: FUNCTIONS

fn gtake(s: String) {
 s
}

fn give() {
 120
}

let s = String::from("z");
let s2 = give();
let s3 = gtake(s);

println!("{s2}"); // OK
println!("{s3}"); // OK

Example

25

A reference to a data enables
lending of such data to a function.
When a reference is passed to a
function, the function does not own
the data.

A reference of a variable can be
retrieved by writing an ampersand (&)
before it. A reference data type is also
prefixed as such.

REFERENCES

fn gborrow(s: &String) {
 println!("{s}");
}

let r = "z".to_string();
gborrow(&r);

// r is still valid!
println!("{r}");

26

REFERENCES

fn gborrow(s: &String) {
 println!("{s}");
}

let r = "z".to_string();
gborrow(&r);

println!("{r}");

Example

P
ro

gr
am

 c
ou

nt
er

Stack pointer

Stack Heap

27

REFERENCES

P
ro

gr
am

 c
ou

nt
er

"z"

r -> (hptr)

Stack pointer

Stack Heap

fn gborrow(s: &String) {
 println!("{s}");
}

let r = "z".to_string();
gborrow(&r);

println!("{r}");

Example

28

REFERENCES

P
ro

gr
am

 c
ou

nt
er

"z"

r -> (hptr)

gborrow stack

Stack pointer

Stack Heap

fn gborrow(s: &String) {
 println!("{s}");
}

let r = "z".to_string();
gborrow(&r);

println!("{r}");

Example

29

REFERENCES

P
ro

gr
am

 c
ou

nt
er

"z"

r -> (hptr)

gborrow stack

&s -> (sptr)Stack pointer

Stack Heap

fn gborrow(s: &String) {
 println!("{s}");
}

let r = "z".to_string();
gborrow(&r);

println!("{r}");

Example

30

REFERENCES

P
ro

gr
am

 c
ou

nt
er

"z"

r -> (hptr)

gborrow stack

&s -> (sptr)Stack pointer

Stack Heap

fn gborrow(s: &String) {
 println!("{s}");
}

let r = "z".to_string();
gborrow(&r);

println!("{r}");

Example

31

REFERENCES

P
ro

gr
am

 c
ou

nt
er

"z"

r -> (hptr)

gborrow stack

&s -> (sptr)Stack pointer

Stack Heap

fn gborrow(s: &String) {
 println!("{s}");
}

let r = "z".to_string();
gborrow(&r);

println!("{r}");

Example

32

REFERENCES

P
ro

gr
am

 c
ou

nt
er

"z"

r -> (hptr)Stack pointer

Stack Heap

fn gborrow(s: &String) {
 println!("{s}");
}

let r = "z".to_string();
gborrow(&r);

println!("{r}");

Example

Example

33

Data pointed to by references are
by default immutable. However, we
can make a reference mutable by
adding the mut keyword after the
ampersand.

The variable should itself be
mutable to be able to get a mutable
reference.

REFERENCES: MUTABLES

fn gmut(s: &mut String) {
 s.push_str("za");
}

let mut r = "z".to_string();
gmut(&mut r);

// r contains "zza"
println!("{r}");

Example

34

We can only have one mutable
reference at any given time.

Additionally, we can either have
only one mutable reference or any
number of immutable references at
any given time.

REFERENCES: MUTABLES

let mut h = String::from("hi");

// Cannot be!
let hptr = &mut h;
let hptr2 = &mut h;

hptr.push_str("!!!");

// Cannot be either!
let a = &h;
let b = &h;
let hptr3 = &mut h;

println!("{a} {b}");

Exam
ple

35

It is possible to create functions that return a reference. However, if the
reference points to data that will become out of scope soon, it is called a
dangling reference. The Rust compiler ensures that such cases will not
happen.

REFERENCES: DANGLES

fn hello_dangle() -> &String {
 let a = String::from("hello!");

 // after function exit, a will be invalid
 &a
}

36

REFERENCES RULES

Rust follows some basic rules
regarding ownership of a data.

1. There can only either be one
mutable or any number of
immutable references at any
given time

2. References must always be
valid.

37

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

02a: Data Ownership

