
CoE 164
Computing Platforms

04b: Cargo Packages



2

GROWING 
CODEBASE
As a software project increases, so is 
its codebase. Code organization is 
important to facilitate faster work and 
increase separation of concerns.

Rust provides a module system so 
that certain codes can be visible to 
the "public" (i.e. other developers).



3

CRATES

A crate is the basic "unit" of code in 
Rust. Compiling code using rustc is 
considered to be compiling a single 
crate.

Crates always have a crate root, 
which is where Rust starts looking for 
files to compile.



4

Binary

◦ Code with a main entry point
◦ Can be run by itself
◦ Intended to be used as a 

standalone program
◦ Starts usually at main.rs

CRATES: TYPES

Library

◦ Collection of codes
◦ Cannot be run by itself
◦ Intended to be used as a 

reference program for other 
programs

◦ Starts usually at lib.rs



5

PACKAGES

A package is a collection of related 
crates that provide some sort of 
functionality.

A package always has a metadata 
file named Cargo.toml describing 
how to compile and build the crates 
in it.



Exam
ple

6

CARGO

The Cargo package is the build system of Rust. It enables programmers 
to manage their Rust projects and automates usual tasks.

A new package can be generated using cargo new <package_name>.

PS ~ cargo new complex_nums

     Created binary (application) `complex_nums` package

PS ~ cd complex_nums



Example

CARGO: FOLDER STRUCTURE

Cargo will generate a Cargo.toml 
file. It will also generate a src/ 
folder where the source code 
should be stored. A "Hello, world!" 
main.rs file is also inside of it for 
editing.

You can freely add folders and files 
in the src/ folder.

complex_nums

    | src

    |   | main.rs

    | .gitignore

    | Cargo.toml

* .gitignore is a file used to exclude files from being included in 
some version control system named Git.



Example

CARGO: MANIFEST FILE

The Cargo.toml file, or the 
manifest contains metadata to 
inform Cargo how to compile the 
package. It is written in TOML 
(Tom's Obvious Minimal Language), 
a file format similar to Windows 
configuration files (.ini).

[package]

name = "complex_nums"

version = "0.1.0"

edition = "2021"



ExampleBinary crates run themselves starting 
from the src/main.rs  file. When 
compiled, it produces an executable of 
the same name as the package.

Alternatively, the root of a library crate is 
the src/lib.rs  file.

By default, the src/main.rs  and 
src/lib.rs  files are called crate roots.

CRATE ROOTS

complex_nums

    | src

    |   | main.rs

    |   | lib.rs

    | .gitignore

    | Cargo.toml



ExampleAdditional binary crates are added in the 
src/bin folder.

It is possible for a package to be both a 
binary and a library crate. It can contain 
any number of binary crates but only one 
library crate.

MULTIPLE CRATES

complex_nums

    | src

    |   | main.rs

    |   | lib.rs

    | bin

    |   | anyhow

    |   |  | ...

    | .gitignore

    | Cargo.toml



11

MODULES

A module is some grouping of files 
within the source tree of a package. 
Modules enable scoping and privacy 
of files for cases when we wanted to 
disseminate the package publicly but 
block usage of code not intended for 
use by others.



Example

MODULES

Modules are declared using a mod 
block. This can contain any 
variables, functions, or declared 
data types grouped sensibly.

Modules can also contain other 
modules.

mod complex {
    mod dtypes {
        struct ComplexRect {
            real: f64,
            imag: f64
        }
    }

    fn gcd(a: i64, b:i64) -> i64 {
    }
}



Example

MODULES: MODULE TREE

In addition to the file tree, Cargo 
looks into the module tree to 
resolve paths, alternative names 
for functions and data types within 
a project.

The module tree is created using 
the information in the crate roots.

crate

    | complex

    |    | dtypes

    |    |   | ComplexRect

    |    | gcd



Exam
ple

MODULES: PATHS

Code inside modules or folders can be invoked using paths. Each "layer" 
is separated by double colons (::).

Absolute paths are stated relative to the crate root denoted by the crate 
keyword. It is recommended to use absolute paths to refer to different 
parts of a module.

// Absolute
crate::complex::gcd( 7, 77);

let z = crate::complex::dtypes::ComplexRect { 
    real: 12.00,
    imag: -10.00,
};



Example

MODULES: PATHS

Relative paths are stated relative to 
the current module.

The super keyword denotes the 
parent of the current module.

// Relative
let z = dtypes::ComplexRect {
    real: 12.00,
    imag: -10.00,
};

// Super
let z = 
super::dtypes::ComplexRect {
    real: 12.00,
    imag: -10.00,
};



Example

MODULES: VISIBILITY

By default, modules are private and 
inaccessible from users that would 
import them. The pub keyword 
should be placed beside the 
module, function, or struct to 
selectively make them public from 
users.

Blocks with parents should have 
their parents also set to public so 
that they become visible.

pub mod complex {
    pub mod dtypes {
        struct ComplexRect {
            real: f64,
            imag: f64,
        }
    }

    pub fn gcd(a: i64, b:i64) -> 
i64 {
        // ...
    }
}



Example

MODULES: VISIBILITY

Fields of structs should be 
separately marked as public even 
though the struct itself is. In 
contrast, all variants of an enum 
become public if the enum itself is.

pub struct ComplexRect {
    pub real: f64,
    pub imag: f64,
}

pub enum Option <E> {
    Some(E),
    None,
}



Exam
ple

The use keyword is used to create a "shortcut" to a path in the module. 
The last name in the path declaration is the default name of the shortcut.

Optionally, we can rename the shortcut by writing the as keyword 
followed by the new name.

MODULES: SHORTCUTS

use crate::complex::{gcd};
use crate::complex::dtypes as dtyp2;
use dtypes::{ComplexRect};



ExampleWhen exposing functions, the use 
shortcut should be referenced up 
to its parent module. This provides 
a namespace that tags the function 
under a certain module.

On the other hand, structs, enums, 
and other items can be referenced 
up to the said item itself unless at 
least two modules have the same 
item name.

MODULES: IDIOMATIC SHORTCUTS

use crate::complex::{gcd};
use crate::complex::dtypes as dtyp2;
use dtypes::{ComplexRect};

gcd(7, 77);

let z = ComplexRect {
    real: 12.00,
    imag: -10.00,
};

dtyp2::ComplexRect {
    real: 0.00,
    imag: 0.30,
};



Exam
ple

Items inside the same path can be separately declared by listing them 
inside curly braces instead of having a separate use declaration.

MODULES: NESTED PATHS

use dtypes::{ComplexRect};

let z = ComplexRect {
    real: 12.00,
    imag: -10.00,
};



Exam
ple

Modules sometimes use their own modules but still want to expose those 
for use by outside packages.

The pub use keyword can be used to both use the module in the code 
and make it available publicly from that code.

MODULES: RE-EXPORT

pub use crate::complex::gcd;

// Outside packages can reference complex_nums::gcd()
// instead of complex_nums::complex::gcd()
gcd(7, 5);



Exam
ple

Publicly-available crates can be added to a package by adding the name 
and version of the crate under the dependencies key in its 
Cargo.toml file. When building, these crates are automatically 
downloaded off the internet.

crates.io is the official crate registry of the Rust community.

EXTERNAL PACKAGES

# For most program dependencies
[dependencies]
rand = "0.8.5"

# For example code and tests
[dev-dependencies]
pretty_assertions = "1"

https://crates.io/


23

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book


CoE 164
Computing Platforms

04b: Cargo Packages


